Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (12): 1-12.doi: 10.11707/j.1001-7488.LYKX20230534
Previous Articles Next Articles
Guangcheng Luo1,2,Xiao He2,Xiangdong Lei2,Biyun Wu2,Wei Xiang1,*
Received:
2023-11-07
Online:
2024-12-25
Published:
2025-01-02
Contact:
Wei Xiang
CLC Number:
Guangcheng Luo,Xiao He,Xiangdong Lei,Biyun Wu,Wei Xiang. Generalized Algebraic Differential Growth Model of Dominant Height for Larix olgensis Plantations[J]. Scientia Silvae Sinicae, 2024, 60(12): 1-12.
Table 1
Descriptive statistics of L. olgensis plantation sample plots"
林分因子Stand variables | 平均值Mean | 标准差Standard deviation | 最小值Min. | 最大值Max. |
林分平均年龄Stand mean age/a | 27.0 | 9.7 | 5 | 65 |
林分优势高Stand dominant height/m | 14.5 | 3.0 | 5.6 | 23.0 |
林分平均胸径Stand average DBH/cm | 13.0 | 3.8 | 5.7 | 28.1 |
林分断面积Stand basal area/(m2·hm?2) | 13.41 | 7.23 | 0.79 | 37.13 |
林分蓄积Stand volume/(m3·hm?2) | 81.73 | 52.68 | 2.53 | 284.31 |
林分密度指数Stand density index/(tree·hm?2) | 498.1 | 246.1 | 40 | 1 285 |
Table 2
Difference models alternative"
编号 No. | 参考文献 References | 差分模型 Difference model | X的解 Solution for X | 自由参数 Free parameter | 基础模型 Base model |
M1 | Richards | ||||
M2 | |||||
M3 | |||||
M4 | Korf | ||||
M5 | |||||
M6 | |||||
M7 | 修正Weibull Adjusted Weibull | ||||
M8 | Hossfeld | ||||
M9 | |||||
M10 | |||||
M11 | Schumacher | ||||
M12 | Gompertz | ||||
M13 |
Table 3
Site factors classification of L. olgensis plantation plots"
立地因子 Site factors | 等级范围(样本量) Level range (sample size) |
海拔 Altitude/m | Ⅰ: 0~200 (8); Ⅱ: 201~400 (539); Ⅲ: 401~600 (566); Ⅳ: 601~800 (310); Ⅴ: 801~1 000 (160); Ⅵ: 1 001~1 200 (35); Ⅶ: 1 201~1 400 (4) |
坡度 Slope degree/(°) | 平坡Conservative slope: 0~4 (401); 缓坡Gentle slope: 5~14 (786); 斜坡Incline slope: 15~24 (379); 陡坡Steep slope: 25~34 (45); 急坡Acute slope: 35~44 (11) |
坡向(方位角) Slope aspect (azimuth)/(°) | 北坡North slope: 338~22 (186); 东北坡Northeast slope: 23~67 (142); 东坡East slope: 68~112 (136); 东南坡Southeast slope: 113~157 (205); 南坡South slope: 158~202 (135); 西南坡Southwest slope: 203~247 (122); 西坡West slope: 248~292 (147); 西北坡Northwest slope: 293~337 (148); 无坡向No aspect: 坡度<5的地段Slope degree <5 (401) |
坡位 Slope position | 脊部Ridge (28); 上坡Up slope (386); 中坡Middle slope (640); 下坡Down slope (418); 山谷Valley (53) ;平地Flat (97) |
土层厚度 Soil thickness/cm | 厚Thick: ≥60 (201); 中Middle: 30~59 (1 290); 薄Thin: <30 (131) |
腐殖质层厚度 Humus thickness/cm | 厚Thick: ≥5.0 (328); 中Middle: 2.0~4.9 (1 018); 薄Thin: <2.0 (276) |
Table 4
Parameter estimation and evaluation for difference models alternative"
编号 No. | 与立地无关参数 Site independent parameter (SIP) | 差分模型参数 Difference model parameter | RMSE/m | rRMSE(%) | |||||
b | c | d1 | d2 | d3 | |||||
M1 | 0.054 | 5.085 | ?1.353 | 0.865 | 1.093 | 7.756 | |||
M2 | 0.054 | ?3.054 | 12.211 | 0.864 | 1.095 | 7.770 | |||
M3 | 0.033 | 0.423 | 0.849 | 1.156 | 8.203 | ||||
M4 | 0.540 | ?2.756e+04 | 9.866e+04 | 0.846 | 1.166 | 8.277 | |||
M5 | 0.381 | 16.459 | 0.864 | 1.095 | 7.770 | ||||
M6 | 0.659 | 76.297 | ?20.469 | 0.862 | 1.106 | 7.852 | |||
M7 | 0.318 | 38.912 | ?9.535 | 0.830 | 0.091 | 3.484 | |||
M8 | 1.050 | 27.604 | 6.110e-06 | 0.858 | 1.119 | 7.940 | |||
M9 | 2.801 | 12.149 | 122.262 | 0.449 | 2.206 | 15.661 | |||
M10 | 1.213 | 0.336 | ?156.340 | 4 513.895 | 0.864 | 1.095 | 7.774 | ||
M11 | ?2.527 | 0.652 | 0.131 | 4.993 | |||||
M12 | 0.079 | 7.639 | ?1.967 | 0.864 | 1.095 | 7.770 | |||
M13 | 0.079 | ?3.923 | 16.943 | 0.864 | 1.096 | 7.778 |
Table 5
Partial correlation analysis of site factors"
立地因子 Site factors | 偏相关系数 Coefficient of partial correlation (Rp) | P | 贡献度 Contribution (%) |
海拔Altitude | 0.379 | <0.001 | 37.790 |
坡度Slope degree | 0.067 | 0.007 | 6.703 |
坡向Slope aspect | 0.006 | 0.799 | 0.632 |
坡位Slope position | 0.113 | <0.001 | 11.249 |
土层厚度Soil thickness | ?0.247 | <0.001 | 24.634 |
腐殖质层厚度 Humus thickness | 0.190 | <0.001 | 18.992 |
Table 6
Mixed effect models parameter estimation and evaluation"
混合参数 Mixed parameter | 参数估计Parameter estimation | 模型评价Model evaluation | |||||||
b | d1 | d2 | d11 | d12 | AIC | BIC | |||
d11 | 0.051 | 3.014 | ?0.683 | 5.584 | ?1.533 | 4 752.506 | 4 790.245 | 0.879 | |
d12 | 0.051 | 3.032 | ?0.689 | 5.561 | ?1.525 | 4 753.599 | 4 791.339 | 0.879 | |
d11, d12 | 不收敛Nonconvergence |
Table 8
Comparisons of mixed effect models with heteroscedasticity and autocorrelation"
模型 Model | 异方差函数 Variance function | 自相关结构 Autocorrelation structure | AIC | BIC | LRT | P |
M1.3 | 无None | 无None | 4 727.464 | 4 765.204 | ||
M1.4 | var Exp | 无None | 不收敛Nonconvergence | |||
M1.5 | var Power | 无None | 4 557.201 | 4 600.332 | 172.263 | <0.001 |
M1.6 | var Const Power | 无None | 4 559.201 | 4 607.724 | 172.263 | <0.001 |
M1.7 | var Power | AR1 | 4 402.492 | 4 451.014 | 156.709 | <0.001 |
M1.8 | var Power | CS | 4 558.609 | 4 607.132 | 0.592 | 0.442 |
M1.9 | var Power | ARMA(1, 1) | 4 403.725 | 4 457.640 | 157.475 | <0.001 |
Table 9
Site graded of 30 years L. olgensis plantations in Jilin Province"
立地等级 Rank of site | 优势高 Dominant height/m | 立地类型Site types | ||
海拔 Altitude/m | 土层厚度 Soil thickness/cm | 腐殖质层 厚度Humus thickness/cm | ||
1 | 18.7 | 0~200 | 薄Thin | 中Middle |
1 001~1 200 | 中Middle | 厚Thick | ||
801~1 000 | 中Middle | 厚Thick | ||
201~400 | 薄Thin | 厚Thick | ||
601~800 | 中Middle | 厚Thick | ||
801~1 000 | 薄Thin | 厚Thick | ||
2 | 17.6 | 601~800 | 薄Thin | 厚Thick |
1 001~1 200 | 中Middle | 薄Thin | ||
801~1 000 | 薄Thin | 薄Thin | ||
601~800 | 薄Thin | 中Middle | ||
801~1 000 | 厚Thick | 薄Thin | ||
601~800 | 中Middle | 薄Thin | ||
401~600 | 薄Thin | 中Middle | ||
801~1 000 | 厚Thick | 厚Thick | ||
401~600 | 薄Thin | 薄Thin | ||
1 001~1 200 | 厚Thick | 中Middle | ||
3 | 16.2 | 401~600 | 中Middle | 厚Thick |
601~800 | 厚Thick | 中Middle | ||
801~1 000 | 中Middle | 中Middle | ||
801~1 000 | 薄Thin | 中Middle | ||
1 201~1 400 | 厚Thick | 中Middle | ||
601~800 | 薄Thin | 薄Thin | ||
1 001~1 200 | 中Middle | 中Middle | ||
401~600 | 薄Thin | 厚Thick | ||
601~800 | 厚Thick | 薄Thin | ||
1 201~1 400 | 中Middle | 中Middle | ||
601~800 | 中Middle | 中Middle | ||
1 001~1 200 | 厚Thick | 厚Thick | ||
601~800 | 厚Thick | 厚Thick | ||
201~400 | 中Middle | 厚Thick | ||
201~400 | 薄Thin | 薄Thin | ||
801~1 000 | 厚Thick | 中Middle | ||
201~400 | 薄Thin | 中Middle | ||
401~600 | 中Middle | 中Middle | ||
4 | 14.4 | 401~600 | 中Middle | 薄Thin |
201~400 | 厚Thick | 中Middle | ||
401~600 | 厚Thick | 厚Thick | ||
201~400 | 中Middle | 中Middle | ||
401~600 | 厚Thick | 薄Thin | ||
401~600 | 厚Thick | 中Middle | ||
201~400 | 中Middle | 薄Thin | ||
5 | 12.8 | 0~200 | 中Middle | 薄Thin |
201~400 | 厚Thick | 厚Thick | ||
0~200 | 中Middle | 中Middle | ||
201~400 | 厚Thick | 薄Thin |
曹元帅, 孙玉军. 基于广义代数差分法的杉木人工林地位指数模型. 南京林业大学学报(自然科学版), 2017, 41 (5): 79- 84. | |
Cao Y S, Sun Y J. Generalized algebraic difference site index model for Chinese fir plantation. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41 (5): 79- 84. | |
柴宗政, 王得祥, 郝亚中, 等. 秦岭中段华北落叶松人工林演替动态. 林业科学, 2014, 50 (2): 14- 21. | |
Chai Z Z, Wang D X, Hao Y Z, et al. Succession dynamics of Larix principis-rupprechtii plantation in intermediate section of Qinling Mountains. Scientia Silvae Sinicae, 2014, 50 (2): 14- 21. | |
段 劼, 马履一, 贾黎明, 等. 北京低山地区油松人工林立地指数表的编制及应用. 林业科学, 2009, 45 (3): 7- 12.
doi: 10.3321/j.issn:1001-7488.2009.03.002 |
|
Duan J, Ma L Y, Jia L M, et al. Establishment and application of site index table for Pinus tabulaeformis plantation in the low elevation area of Beijing. Scientia Silvae Sinicae, 2009, 45 (3): 7- 12.
doi: 10.3321/j.issn:1001-7488.2009.03.002 |
|
段光爽, 郑亚丽, 洪 亮, 等. 基于潜在生产力的华北落叶松纯林和白桦山杨混交林立地质量评价. 林业科学, 2022, 58 (10): 1- 9. | |
Duan G S, Zheng Y L, Hong L, et al. A potential productivity-based approach of site quality evaluation for larch pure forest and birch-aspen mixed forest. Scientia Silvae Sinicae, 2022, 58 (10): 1- 9. | |
何 静, 李新建, 朱晋梅, 等. 基于最粗优势木胸径生长的湖南栎类天然林立地质量评价模型. 林业科学, 2022, 58 (8): 89- 98. | |
He J, Li X J, Zhu J M, et al. Site quality evaluation model of natural Quercus forests in Hunan based on the growth of the thickest dominant tree diameter at breast height. Scientia Silvae Sinicae, 2022, 58 (8): 89- 98. | |
华伟平, 武健伟, 于丽瑶, 等. 基于森林潜在生产力评价模型的林地分等及应用. 林业资源管理, 2023, (3): 29- 37. | |
Hua W P, Wu J W, Yu L Y, et al. Forestland grading based on forest potential productivity evaluation model and its application. Forest Resources Management, 2023, (3): 29- 37. | |
惠淑荣, 李丽锋, 刘 强, 等. 辽东地区日本落叶松立地分类和立地质量研究. 西北林学院学报, 2011, 26 (3): 139- 142. | |
Hui S R, Li L F, Liu Q, et al. Analysis of site condition and quality of Larix kaempferi in eastern Liaoning Province. Journal of Northwest Forestry University, 2011, 26 (3): 139- 142. | |
赖文豪, 席 沁, 武海龙, 等. 内蒙古兴和县低山丘陵立地类型划分与林草适宜性评价. 浙江农林大学学报, 2018, 35 (2): 331- 339.
doi: 10.11833/j.issn.2095-0756.2018.02.018 |
|
Lai W H, Xi Q, Wu H L, et al. Site classification type and vegetation suitability evaluation for hilly land in Xinghe, Inner Mongolia. Journal of Zhejiang A & F University, 2018, 35 (2): 331- 339.
doi: 10.11833/j.issn.2095-0756.2018.02.018 |
|
雷相东, 唐守正, 符利勇, 等. 2020. 森林立地质量定量评价: 理论 方法 应用. 北京: 中国林业出版社. | |
Lei X D, Tang S Z, Fu L Y, et al. 2020. Quantitative evaluation of forest site quality: theory, method, application. Beijing: China Forestry Publishing House. [in Chinese] | |
李斌成, 许业洲, 袁 慧, 等. 湖北省日本落叶松差分型立地指数模型构建. 森林与环境学报, 2020, 40 (4): 433- 441. | |
Li B C, Xu Y Z, Yuan H, et al. Construction of a differential site index model for a Larix kaempferi plantation in Hubei Province. Journal of Forest and Environment, 2020, 40 (4): 433- 441. | |
李平平, 王彦辉, 段文标, 等. 黄土高原刺槐人工林立地指数变化及评价. 林业科学, 2023, 59 (4): 18- 31.
doi: 10.11707/j.1001-7488.LYKX20220621 |
|
Li P P, Wang Y H, Duan W B, et al. Variation and evaluation of site index of black locust plantations on the Loess Plateau of northwest China. Scientia Silvae Sinicae, 2023, 59 (4): 18- 31.
doi: 10.11707/j.1001-7488.LYKX20220621 |
|
李晓燕, 段爱国, 张建国. 不同产区杉木人工林初植密度对优势高生长的影响. 林业科学, 2023, 59 (8): 22- 29.
doi: 10.11707/j.1001-7488.LYKX20210836 |
|
Li X Y, Duan A G, Zhang J G. Effects of initial planting density on dominant height growth of Chinese fir (Cunninghamia lanceolata) plantation in different distribution areas. Scientia Silvae Sinicae, 2023, 59 (8): 22- 29.
doi: 10.11707/j.1001-7488.LYKX20210836 |
|
刘创民, 梁海英, 罗菊春. 西林吉林业局天然兴安落叶松立地条件的调查研究. 林业科学, 1993, 29 (5): 456- 462. | |
Liu C M, Liang H Y, Luo J C. Investigation on site conditions of natural Larix gmelinii in the Forestry Bureau of Xilinji. Scientia Silvae Sinicae, 1993, 29 (5): 456- 462. | |
刘佳琪, 魏广阔, 史常青, 等. 基于MaxEnt模型的北方抗旱造林树种适宜区分布. 北京林业大学学报, 2022, 44 (7): 63- 77.
doi: 10.12171/j.1000-1522.20210527 |
|
Liu J Q, Wei G K, Shi C Q, et al. Suitable distribution area of drought-resistant afforestation tree species in north China based on MaxEnt model. Journal of Beijing Forestry University, 2022, 44 (7): 63- 77.
doi: 10.12171/j.1000-1522.20210527 |
|
马 羽, 许业洲, 袁 慧, 等. 湖北省杉木人工林胸径差分方程及多形地位指数表研究. 森林工程, 2023, 39 (2): 72- 81. | |
Ma Y, Xu Y Z, Yuan H, et al. Study on DBH difference equation and polymorphic site index table of Chinese fir plantation in Hubei Province. Forest Engineering, 2023, 39 (2): 72- 81. | |
孟宪宇, 陈东来. 山杨次生林地位指数表编制方法的研究. 北京林业大学学报, 2001, 23 (3): 47- 51.
doi: 10.3321/j.issn:1000-1522.2001.03.011 |
|
Meng X Y, Chen D L. Study on constructive method of site index table for poplar secondary forest. Journal of Beijing Forestry University, 2001, 23 (3): 47- 51.
doi: 10.3321/j.issn:1000-1522.2001.03.011 |
|
倪成才, 于福平, 张玉学, 等. 差分生长模型的应用分析与研究进展. 北京林业大学学报, 2010, 32 (4): 284- 292. | |
Ni C C, Yu F P, Zhang Y X, et al. Application analysis and recent advances of projection growth models. Journal of Beijing Forestry University, 2010, 32 (4): 284- 292. | |
牛亦龙, 董利虎, 李凤日. 基于广义代数差分法的长白落叶松人工林地位指数模型. 北京林业大学学报, 2020, 42 (2): 9- 18. | |
Niu Y L, Dong L H, Li F R. Site index model for Larix olgensis plantation based on generalized algebraic difference approach derivation. Journal of Beijing Forestry University, 2020, 42 (2): 9- 18. | |
牛亦龙. 2021. 长白落叶松-水曲柳带状混交林立地质量评价. 哈尔滨: 东北林业大学. | |
Niu Y L. 2021. Evaluation of site quality for Larix olgensis and Fraxinus mandshurica belt-mixed plantation. Harbin: Northeast Forestry University. [in Chinese] | |
孙拥康, 汤景明, 王 怡, 等. 鄂西山区日本落叶松人工林全林整体模型研究与应用. 森林工程, 2023, 39 (3): 57- 63. | |
Sun Y K, Tang J M, Wang Y, et al. Research and application of the integrated stand growth model of Larix kaempferi plantation in the mountainous area of western Hubei. Forest Engineering, 2023, 39 (3): 57- 63. | |
宋 争, 黄 朗, 胡 松, 等. 基于立地混合效应的湖南丘陵平原区杉木多形立地指数模型研究. 林业科学研究, 2022, 35 (5): 172- 179. | |
Song Z, Huang L, Hu S, et al. Polymorphic site-index model with site mixed effects for Chinese fir plantations in Hunan hilly plains. Forest Research, 2022, 35 (5): 172- 179. | |
王冬至, 张冬燕, 王 方, 等. 塞罕坝主要立地类型针阔混交林树高曲线构建. 北京林业大学学报, 2016, 38 (10): 7- 14. | |
Wang D Z, Zhang D Y, Wang F, et al. Height curve construction of needle and broadleaved mixed forest under main site types in Saihanba, Hebei of northern China. Journal of Beijing Forestry University, 2016, 38 (10): 7- 14. | |
王志波, 季 蒙, 李永乐, 等. 华北落叶松人工林差分地位指数模型构建. 林业资源管理, 2021, (1): 156- 163. | |
Wang Z B, Ji M, Li Y L, et al. Construction of difference site index model for Larix principis-rupprechtii plantation. Forest Resources Management, 2021, (1): 156- 163. | |
袁其站, 张慧勤, 李剑吾, 等. 河南省日本落叶松适生区研究. 北京林业大学学报, 2000, 22 (3): 44- 47. | |
Yuan Q Z, Zhang H Q, Li J W, et al. The suitable area of Larix kaempferi in Henan Province. Journal of Beijing Forestry University, 2000, 22 (3): 44- 47. | |
张春霞, 冯自茂, 李文鑫, 等. 陕西黄陵油松人工林立地类型划分及评价. 西北农林科技大学学报(自然科学版), 2021, 49 (1): 55- 63. | |
Zhang C X, Feng Z M, Li W X, et al. Site classification and evaluation of Pinus tabulaeformis plantation in Huangling, Shaanxi. Journal of Northwest A & F University (Natural Science Edition), 2021, 49 (1): 55- 63. | |
赵 磊, 倪成才, Gordon Nigh. 加拿大哥伦比亚省美国黄松广义代数差分型地位指数模型. 林业科学, 2012, 48 (3): 74- 81.
doi: 10.11707/j.1001-7488.20120312 |
|
Zhao L, Ni C C, Nigh G. Generalized algebraic difference site index model for ponderosa pine in British Columbia, Canada. Scientia Silvae Sinicae, 2012, 48 (3): 74- 81.
doi: 10.11707/j.1001-7488.20120312 |
|
Adame P, Cañellas I, Roig S, et al. Modelling dominant height growth and site index curves for rebollo oak (Quercus pyrenaica Willd.). Annals of Forest Science, 2006, 63 (8): 929- 940.
doi: 10.1051/forest:2006076 |
|
Bravo-Oviedo A, del Río M, Montero G. Site index curves and growth model for Mediterranean maritime pine (Pinus pinaster Ait.) in Spain. Forest Ecology and Management, 2004, 201 (2/3): 187- 197. | |
Bravo-Oviedo A, del Río M, Montero G. Geographic variation and parameter assessment in generalized algebraic difference site index modelling. Forest Ecology and Management, 2007, 247 (1/2/3): 107- 119. | |
Bravo-Oviedo A, Roig S, Bravo F, et al. Environmental variability and its relationship to site index in Mediterranean maritime pine. Forest Systems, 2011, 20 (1): 50- 64.
doi: 10.5424/fs/2011201-9106 |
|
Christophe C, Gil K, Laurent S A, et al. Relationship between soil nutritive resources and the growth and mineral nutrition of a beech (Fagus sylvatica) stand along a soil sequence. Catena, 2017, 155, 156- 169.
doi: 10.1016/j.catena.2017.03.013 |
|
Cieszewski C J, Bailey R L. Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes. Forest Science, 2000, 46 (1): 116- 126.
doi: 10.1093/forestscience/46.1.116 |
|
de Souza H J, Miguel E P, Nascimento R G M, et al. Thinning-response modifier term in growth models: an application on clonal Tectona grandis Linn F. stands at the amazonian region. Forest Ecology and Management, 2022, 511, 120109.
doi: 10.1016/j.foreco.2022.120109 |
|
Diéguez-Aranda U, González J G A, Anta M B, et al. Site quality equations for Pinus sylvestris L. plantations in Galicia (northwestern Spain). Annals of Forest Science, 2005, 62 (2): 143- 152.
doi: 10.1051/forest:2005006 |
|
Duan G S, Lei X D, Zhang X Q, et al. Site index modeling of larch using a mixed-effects model across regional site types in northern China. Forests, 2022, 13 (5): 815.
doi: 10.3390/f13050815 |
|
Elfving B, Kiviste A. Construction of site index equations for Pinus sylvestris L. using permanent plot data in Sweden. Forest Ecology and Management, 1997, 98 (2): 125- 134.
doi: 10.1016/S0378-1127(97)00077-7 |
|
Ercanli İ, Kahrİman A, Yavuz H. Dynamic base-age invariant site index models based on generalized algebraic difference approach for mixed Scots pine (Pinus sylvestris L.) and Oriental beech (Fagus orientalis Lipsky) stands. Turkish Journal of Agriculture and Forestry, 2014, 38, 134- 147.
doi: 10.3906/tar-1212-67 |
|
Gülsoy S, Çinar T. The relationships between environmental factors and site index of anatolian black pine (Pinus nigra Arn. subsp. pallasiana (Lamb. ) Holmboe) stands in Demİrcİ (Manİsa) district, Turkey. Applied Ecology and Environmental Research, 2019, 17 (1): 1235- 1246.
doi: 10.15666/aeer/1701_12351246 |
|
Guo Y R, Han Y Y, Wu B G, et al. Study on modelling of site quality evaluation and its dynamic update technology for plantation forests. Nature Environment and Pollution Technology, 2013, 12 (4): 591- 597. | |
Hipler S M, Spiecker H, Wu S R. Dynamic top height growth models for eight native tree species in a cool-temperate region in northeast China. Forests, 2021, 12 (8): 965.
doi: 10.3390/f12080965 |
|
Koirala A, Montes C R, Bullock B P. Modeling dominant height using stand and water balance variables for loblolly pine in the western Gulf, US. Forest Ecology and Management, 2021, 479, 118610.
doi: 10.1016/j.foreco.2020.118610 |
|
Lopez-Senespleda E, Bravo-Oviedo A, Alonso R, et al. Resource communication. Modeling dominant height growth including site attributes in the GADA approach for Quercus faginea Lam. in Spain. Forest Systems, 2014, 23 (3): 494- 499.
doi: 10.5424/fs/2014233-04937 |
|
Merganič J, Pichler V, Gömöryová E, et al. Modelling impact of site and terrain morphological characteristics on biomass of tree species in Putorana Region. Plants, 2021, 10 (12): 2722.
doi: 10.3390/plants10122722 |
|
Messaoud Y, Chen Han Y H. The influence of recent climate change on tree height growth differs with species and spatial environment. PLoS One, 2011, 6 (2): e14691.
doi: 10.1371/journal.pone.0014691 |
|
Nava-Nava A, Santiago-García W, Quiñonez-Barraza G, et al. Climatic and topographic variables improve estimation accuracy of Patula pine forest site productivity in southern Mexico. Forests, 2022, 13 (8): 1277.
doi: 10.3390/f13081277 |
|
Oğuzoğlu Ş, Özkan K. Productivity distribution modelling of Anatolian black pine (Pinus nigra subsp. pallasiana var. pallasiana) in the Türkmen Mountain, Eskişehir. Biological Diversity and Conservation, 2015, 2 (8): 134- 140. | |
Palahí M, Tomé M, Pukkala T, et al. Site index model for Pinus sylvestris in north-east Spain. Forest Ecology and Management, 2004, 187 (1): 35- 47.
doi: 10.1016/S0378-1127(03)00312-8 |
|
Reineke L H. Perfecting a stand-density index for even-aged forests. Journal of Agriculture Research, 1933, 46 (7): 627- 638. | |
Scolforo H F, de Castro Neto F, Soares Scolforo J R, et al. Modeling dominant height growth of Eucalyptus plantations with parameters conditioned to climatic variations. Forest Ecology and Management, 2016, 380, 182- 195.
doi: 10.1016/j.foreco.2016.09.001 |
|
Soong J L, Janssens I A, Grau O, et al. Soil properties explain tree growth and mortality, but not biomass, across phosphorus-depleted tropical forests. Scientific Reports, 2020, 10 (1): 2302.
doi: 10.1038/s41598-020-58913-8 |
|
Tahar S, Marc P, Salah G, et al. Modeling dominant height growth in planted Pinus pinea stands in northwest of Tunisia. International Journal of Forestry Research, 2012, 902381. | |
Takahashi K, Hirosawa T, Morishima R. How the timberline formed: altitudinal changes in stand structure and dynamics around the timberline in central Japan. Annals of Botany, 2012, 109 (6): 1165- 1174.
doi: 10.1093/aob/mcs043 |
|
Weber-Blaschke G, Heitz R, Blaschke M, et al. Growth and nutrition of young European ash (Fraxinus excelsior L.) and sycamore maple (Acer pseudoplatanus L.) on sites with different nutrient and water statuses. European Journal of Forest Research, 2008, 127 (6): 465- 479.
doi: 10.1007/s10342-008-0230-x |
|
Zang H, Lei X D, Zeng W S. Height–diameter equations for larch plantations in northern and northeastern China: a comparison of the mixed-effects, quantile regression and generalized additive models. Forestry, 2016, 89 (4): 434- 445.
doi: 10.1093/forestry/cpw022 |
|
Zhu G Y, Hu S, Chhin S, et al. Modelling site index of Chinese fir plantations using a random effects model across regional site types in Hunan Province, China. Forest Ecology and Management, 2019, 446, 143- 150.
doi: 10.1016/j.foreco.2019.05.039 |
[1] | Jing He,Xinjian Li,Jinmei Zhu,Guangyu Zhu. Site Quality Evaluation Model of Natural Quercus Forests in Hunan Based on the Growth of the Thickest Dominant Tree Diameter at Breast Height [J]. Scientia Silvae Sinicae, 2022, 58(8): 89-98. |
[2] | Lingbo Dong,Xueying Lin,Yifan Zhang,Zhaogang Liu. Optimal Rotation of Larix olgensis Plantation in Considering Carbon Sequestration and Timber Production [J]. Scientia Silvae Sinicae, 2022, 58(5): 18-30. |
[3] | Guangshuang Duan,Yali Zheng,Liang Hong,Xinyu Song,Liyong Fu. A Potential Productivity-Based Approach of Site Quality Evaluation for Larch Pure Forest and Birch-Aspen Mixed Forest [J]. Scientia Silvae Sinicae, 2022, 58(10): 1-9. |
[4] | Xingjing Chen,Linyan Feng,Yuchao Zhang,Qingwang Liu,Zhaohui Yang,Liyong Fu,Jinhua Bai. Inversion of Aboveground Biomass in the Core Area of Chongli Winter Olympics Based on Airborne LiDAR [J]. Scientia Silvae Sinicae, 2022, 58(10): 35-46. |
[5] | Xiaofang Zhang,Xuzhan Guo,Liang Hong,Tao Chen,Liyong Fu,Huiru Zhang. Comparison of Single Tree Crown Prediction Models of Larix principis-rupprechtii and Betula platyphylla in the Core Area of the Winter Olympics in China [J]. Scientia Silvae Sinicae, 2022, 58(10): 89-100. |
[6] | Yu Bai,Yong Pang,Xiaoyun Xia,Weiwei Jia. 3-PG Model Parameterization Using Destructive Sampling Data of Larix olgensis [J]. Scientia Silvae Sinicae, 2022, 58(1): 98-110. |
[7] | Xiaowen Zhang,Qingjun Yu,Guisheng Luo,Xi Jia,Danni Wu,Zhongkui Jia. Site Classification and Site Quality Evaluation of Pinus tabulaeformis Plantation for Construction Timber in Pingquan, Hebei Province [J]. Scientia Silvae Sinicae, 2021, 57(9): 1-12. |
[8] | Tingting Zhao,Dongzhi Wang,Dongyan Zhang,Li Guo,Xuanrui Huang. Crown Prediction Model of Larix principis-rupprechtii Plantation in Saihanba of Hebei Province, Northern China [J]. Scientia Silvae Sinicae, 2021, 57(5): 108-118. |
[9] | Xuefan Hu,Huiru Zhang,Guangshuang Duan,Jun Lu. Establishment and Evaluation of Tree Competition Index Based on Intersection and Crowding [J]. Scientia Silvae Sinicae, 2021, 57(4): 182-190. |
[10] | Xiaoyun Xia,Yong Pang,Qingfeng Huang,Rong Wu,Dongsheng Chen,Yu Bai. Prediction of Biomass Growth of Larix olgensis Based on 3-PG Model [J]. Scientia Silvae Sinicae, 2021, 57(3): 67-78. |
[11] | Ning Liu,Changjun Ding,Bo Li,Mi Ding,Xiaohua Su,Qinjun Huang. Effects of Genotype by Environment Interaction of 12 Populus×euramericana Clones in Their Early Growth [J]. Scientia Silvae Sinicae, 2020, 56(8): 63-72. |
[12] | Yefan Cao,Laifa Wang,Xizhuo Wang,Jiehong Fan. Pathogenicity of Bursaphelenchus xylophilus to Larix olgensis Seedlings [J]. Scientia Silvae Sinicae, 2020, 56(11): 108-115. |
[13] | Gao Huilin, Dong Lihu, Li Fengri. Crown Profile Prediction Model for Pinus sylvestris var. mongolica Plantation Based on Modified Kozak Model [J]. Scientia Silvae Sinicae, 2019, 55(8): 84-94. |
[14] | Song Yue, Li Shujuan, Zhang Hanguo, Bai Xiaoming, Bi Xianyu, Dong Shiwei, Dong Hao. Establishment and Optimization of Embryogenic Callus Suspension Culture System of Larix [J]. Scientia Silvae Sinicae, 2018, 54(7): 146-154. |
[15] | Jiang Dun, Xue Yi, Xu Zhiwen, Wang Jiabing, Meng Zhaojun, Yan Shanchun. Effects of Induced-Resistance of Larix olgensis by Sbraying Jasmonic Acid on Growth and Development of Lymantria dispar [J]. Scientia Silvae Sinicae, 2018, 54(1): 162-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||