Scientia Silvae Sinicae ›› 2020, Vol. 56 ›› Issue (6): 12-25.doi: 10.11707/j.1001-7488.20200602
Previous Articles Next Articles
Yanhui Liu,Yiju Hou,Deyuan Shu,Bing Yang,Yingchun Cui,Fangjun Ding*
Received:
2018-11-08
Online:
2020-06-25
Published:
2020-06-24
Contact:
Fangjun Ding
CLC Number:
Yanhui Liu,Yiju Hou,Deyuan Shu,Bing Yang,Yingchun Cui,Fangjun Ding. Properties and Spatio-Temporal Variation of Leaf Retained Particulate Matters of the Main Tree Species Planted in Guiyang City[J]. Scientia Silvae Sinicae, 2020, 56(6): 12-25.
Table 1
Distribution of sample trees in sampling sites and characteristics of sample trees"
树种Tree species | 样树特征Characteristics of sample trees | 采样点Sample sites | |||||||
DBH/cm | 冠幅 Canopy diameter/m | 冠幅投影面积 Canopy projected area/m2 | LAI | US | UP | SG | SF | ||
桂花O. fragrans | 11.85 | 4.26 | 16.92 | 2.53 | + | + | + | + | |
樱花C. subhirtella | 23.7 | 5.50 | 23.75 | 2.47 | + | + | + | + | |
香樟C. camphora | 35.87 | 8.78 | 65.77 | 2.50 | + | + | + | + | |
银杏G. biloba | 21.00 | 3.80 | 11.34 | 2.46 | + | + | + | - | |
迎春花J. nudiflorum | 1.80 | 5.20 | 18.78 | 2.47 | + | + | + | - | |
琴丝竹B. miltiplex | 2.17 | 0.70 | 0.80 | 3.32 | + | + | + | + | |
女贞L. lucidum | 9.20 | 3.90 | 11.94 | 2.48 | - | + | + | + | |
红花檵木L.chinense var. rubrum | 3.74 | 1.76 | 2.51 | 2.78 | + | + | + | + | |
红叶石楠P. fraseri | 6.45 | 2.22 | 4.04 | 4.24 | + | + | + | - | |
白玉兰M. denudata | 17.95 | 4.70 | 17.00 | 2.78 | - | + | + | + | |
杜鹃R. simsii | 2.65 | 1.29 | 1.28 | 2.62 | + | + | + | - | |
雪松C. deodara | 52.30 | 10.33 | 87.42 | 3.18 | + | + | + | + | |
杨梅M. rubra | 24.10 | 4.95 | 32.43 | 2.58 | + | - | - | + | |
栾树K. paniculata | 21.93 | 5.40 | 23.18 | 2.89 | - | - | - | + |
Table 2
Indexes of micro-morphological structure characteristics of leaf surface"
指标Index | 符号Sign | 单位Unit | 定义Definition |
气孔密度Density of stoma | Ds | mm-2 | 单位叶表面积的气孔数量Number of stoma per unit leaf area |
气孔开口面积Area of stoma opening | Sso | mm2·mm-2 | 单位叶面积的气孔开口面积Area of stoma opening per unit leaf area |
气孔开度Opening degree of stoma | Os | μm2·μm-2 | 单个气孔开口面积与气孔面积比Ratio of stomatal opening area and stoma area |
气孔器纵径Length of stomatal apparatus | Ls | μm | |
气孔器横径Width of stomatal apparatus | Ws | μm | |
气孔器横纵径比Ratio of width to length of stomatal apparatus | Rs | ||
气孔口纵径Length of stomatal opening | Lso | μm | |
气孔口横径Width of stomatal opening | Wso | μm | |
气孔口横纵径比Ratio of width to length of stomatal opening | Rso | ||
粗糙度Roughness | RD | 无量纲 Dimensionless | 单位叶表面积斑块数量的相对值Relative value of the number of plaques per unit leaf surface area |
叶脉密度Vein density | Dv | μm·mm-2 | 单位叶表面的叶脉长度Length of vein per unit leaf surface area |
沟槽宽度Width of groove | Wg | μm | 叶表面蜡质或角质突起间的下凹沟槽宽度Width of lower concave groove between waxy or cuticular processes on leaf surface |
蜡质覆盖指数Wax coverage index | Iw | 无量纲 Dimensionless | 叶表面蜡质/角质覆盖程度Degree of waxy or cutin covering on leaf surface |
疣状突起密度Protrusions density | Dp | mm-2 | 单位叶表面积的乳状、瘤状突起数量Number of nipples or protrusions per unit leaf surface area |
表皮毛长length of epidermis hair | Lh | μm | 叶表面表皮毛的长度Length of epidermis hair |
表皮毛密度Epiderm hair density | Dh | mm-2 | 单位叶表面积的表皮毛数量Number of epiderm is hair per unit leaf surface area |
Table 4
Analysis of variance of total suspended particulate retention on leaf surface between tree group and shrub group"
采样点 Sampling sites | 差异来源 Variance sources | 平方和 Sum of squares | df | 均方 Mean square | F | 显著性 Significance |
组间Between groups | 30.248 | 1 | 30.248 | 1.573 | 0.212 | |
1 | 组内Within the group | 2 172.309 | 113 | 19.224 | ||
总和Total | 2 202.558 | 114 | ||||
组间Between groups | 6.393 | 1 | 6.393 | 0.14 | 0.709 | |
2 | 组内Within the group | 7 723.889 | 169 | 45.703 | ||
总和Total | 7 730.282 | 170 | ||||
组间Between groups | 0.070 | 1 | 0.070 | 0.007 | 0.932 | |
3 | 组内Within the group | 1 091.703 | 115 | 9.493 | ||
总和Total | 1 091.772 | 116 | ||||
组间Between groups | 18.273 | 1 | 18.273 | 2.918 | 0.092 | |
4 | 组内Within the group | 457.060 | 73 | 6.261 | ||
总和Total | 475.333 | 74 |
Table 5
Classification of PM retention quatity on leaf surface μg·cm-2"
类别 Classification | 种数 Species | M′ | |||
TSP | PM10 | PM2.5 | PM1 | ||
Ⅰ | 2 | 10.255 ±1.255 | 4.753 ±0.926 | 0.250 ±0.034 | 0.021 ±0.005 |
Ⅱ | 1 | 6.235 | 2.605 | 0.169 | 0.021 |
Ⅲ | 11 | 2.635 ±0.742 | 1.126 ±0.338 | 0.068 ±0.023 | 0.006 ±0.002 |
加权均值Weighted mean | 14 | 3.981 ±2.919 | 1.750 ±1.388 | 0.102 ±0.072 | 0.009 ±0.007 |
Table 6
Size composition of PM adsorbed on leaf surface and in air"
项目Item | 组分质量比 Different classification PM mass ratio | 质量分数(%) Percentage of PM mass concentration in different particle size range | ||||||
TSP/PM1 | PM10/PM1 | PM2.5/PM1 | PM10~100 | PM2.5~10 | PM1.0~2.5 | PM≤1 | ||
叶面Leaf surface | 458.5 | 204.8 | 12.1 | 55.34 | 42.02 | 2.42 | 0.22 | |
空气In air | 15.38 | 9.1 | 3.0 | 41.03 | 39.26 | 13.21 | 6.50 |
Table 7
Micro-morphological structure characteristic parameters of leaf surface"
树种 Tree species | 气孔 密度 Density of stoma/ mm-2 | 气孔开 口面积 Area of stoma opening/ (mm2·mm-2) | 气孔 开度 Opening degree of stoma | 气孔器纵径 Length of stomatal apparatus/ μm | 气孔器 横径 Width of stomatal apparatus/ μm | 气孔器 横纵径比 Ratio of width to length of stomatal apparatus | 气孔口 纵径 Length of stomatal opening/ μm | 气孔口 横径 Width of stomatal opening/ μm | 气孔口 横纵径比 Ratio of width to length of stomatal opening | 粗糙度 Roughness | 叶脉密度 Vein density/ (μm·cm-2) | 蜡质覆 盖指数 Wax coverage index | 沟槽宽度 Width of groove/ μm | 疣状突 起密度 Protrusions density/ mm-2 | 表皮毛 密度 Epidermis hair density/ mm-2 | 表皮毛长 Length of epidermis hair/ μm |
桂花O. fragrans | 596.02 | 0.026 | 0.07 | 28 | 23.67 | 0.85 | 9.16 | 5.96 | 0.65 | 0.45 | 1 183.47 | 0.75 | 0 | 9.56 | 0 | 0 |
樱花C.subhirtella | 360.91 | 0.054 | 0.21 | 36.16 | 17.71 | 0.49 | 17.82 | 4.95 | 0.28 | 0.38 | 2 925.00 | 0.75 | 14.4 | 0 | 0 | 0 |
香樟C.camphora | 199.71 | 0.010 | 0.09 | 32.31 | 24.80 | 0.77 | 17.16 | 5.79 | 0.34 | 0.36 | 908.57 | 0.50 | 0 | 0 | 5.96 | 227.35 |
银杏G.biloba | 62.23 | 0.027 | 0.21 | 52.15 | 46.99 | 0.9 | 23.26 | 19.65 | 0.84 | 0.2 | 753.88 | 0.25 | 9.05 | 0 | 0 | 0 |
迎春花J.nudiflorum | 137.71 | 0.009 | 0.25 | 23.98 | 19.37 | 0.81 | 14.78 | 6.73 | 0.46 | 0.57 | 551.33 | 0.75 | 5.82 | 0 | 0 | 0 |
琴丝竹B.miltiplex | 398.19 | 0.023 | 0.19 | 21.13 | 19.74 | 0.93 | 8.61 | 6.26 | 0.73 | 0.49 | 3 600.31 | 0.75 | 3.7 | 0 | 53.32 | 113.65 |
女贞L. lucidum | 230.61 | 0.036 | 0.33 | 28.16 | 25.69 | 0.91 | 17.68 | 9.45 | 0.53 | 0.43 | 217.25 | 0.25 | 5.21 | 5.10 | 0 | 0 |
红花檵木L. chinense var. rubrum | 332.32 | 0.027 | 0.15 | 23.38 | 28.76 | 1.23 | 9.69 | 4.94 | 0.51 | 0.44 | 1 816.56 | 0.50 | 10.1 | 0 | 64.03 | 251.90 |
红叶石楠P. fraseri | 197.42 | 0.025 | 0.17 | 32.93 | 29.40 | 0.89 | 16.61 | 9.33 | 0.56 | 0.05 | 0 | 0.75 | 0 | 5.90 | 0 | 0 |
白玉兰M. denudata | 289.52 | 0.023 | 0.10 | 31.86 | 45.31 | 1.42 | 18.92 | 5.24 | 0.28 | 0.34 | 724.69 | 0.25 | 25.35 | 0 | 28.01 | 24.70 |
杜鹃R.simsii | 446.72 | 0.038 | 0.19 | 23.38 | 26.26 | 1.12 | 11.43 | 5.20 | 0.45 | 0.63 | 0 | 0.50 | 6.62 | 0 | 12.04 | 428.65 |
雪松C.deodara | 34.24 | 0.022 | 0.23 | 67.73 | 46.50 | 0.69 | 37.26 | 21.19 | 0.57 | 0.57 | 2 456.70 | 0.50 | 6.23 | 0 | 0 | 0 |
杨梅M.rubra | 424.30 | 0.024 | 0.12 | 22.25 | 21.71 | 0.98 | 8.36 | 5.63 | 0.67 | 0.38 | 1 361.39 | 0.75 | 9.23 | 1.63 | 0 | 0 |
栾树K.paniculata | 333.21 | 0.005 | 0.12 | 14.23 | 8.46 | 0.59 | 7.80 | 1.78 | 0.23 | 0.14 | 2 649.98 | 0.5 | 4.6 | 0 | 11.02 | 57.43 |
Table 8
Path analysis of leaf surface micro-morphological structure and PM retention quantity"
变量 Variable | 相关系数 Correlation coefficient r | 直接通 径系数 Direct path coefficient Pd | 间接通径系数 Indirect path coefficient Pi | 决策系数 Decision coefficient (R2) | |||||||||||
气孔开口 面积 Area of stoma opening (Sso) | 气孔开度 Opening degree of stoma (Os) | 气孔器横 纵径比 Ratio of width to length of stomatal apparatus (Rs) | 气孔口横径 Width of stomatal opening (Wso) | 气孔口横 纵径比 Ratio of width to length of stomatal opening (Rso) | 粗糙度 Roughness RD | 叶脉密度 Vein density (Dv) | 蜡质覆 盖指数 Wax coverage index (Iw) | 表皮毛 密度 Epidermis hair density (Dh) | 表皮 毛长 Length of epidermis hair (Lh) | 疣状突 起密度 Protrusions density (Dp) | 合计 Total | ||||
Sso | 0.151 | -0.341 | 0.115 | 0.059 | 0.041 | 0.057 | 0.049 | -0.048 | -0.018 | -0.007 | 0.152 | 0.096 | 0.497 | -0.219 | |
Os | -0.02 | 0.299 | -0.131 | -0.141 | 0.164 | 0.068 | 0.049 | -0.199 | -0.039 | -0.035 | 0.018 | -0.053 | -0.300 | -0.101 | |
Rs | 0.275 | 0.699 | -0.029 | -0.060 | -0.051 | 0.047 | 0.026 | -0.488 | -0.074 | 0.103 | 0.173 | -0.017 | -0.371 | -0.104 | |
Wso | 0.224 | 0.38 | -0.037 | 0.129 | -0.094 | 0.202 | 0.003 | -0.115 | -0.065 | -0.060 | -0.092 | -0.019 | -0.148 | 0.026 | |
Rso | 0.233 | 0.361 | -0.054 | 0.057 | 0.090 | 0.212 | 0.012 | -0.549 | 0.018 | 0.004 | -0.008 | 0.143 | -0.075 | 0.038 | |
RD | 0.507 | 0.176 | -0.096 | 0.083 | 0.103 | 0.007 | 0.024 | 0.036 | 0.021 | 0.031 | 0.204 | -0.091 | 0.322 | 0.147 | |
Dv | 0.276 | 0.999 | 0.016 | -0.060 | -0.345 | -0.044 | -0.200 | 0.006 | 0.029 | 0.004 | -0.098 | -0.121 | -0.812 | -0.434 | |
Iw | 0.073 | 0.193 | 0.031 | -0.061 | -0.268 | -0.127 | 0.034 | 0.019 | 0.149 | -0.010 | -0.021 | 0.114 | -0.140 | -0.009 | |
Dh | 0.404 | 0.192 | 0.013 | -0.054 | 0.375 | -0.119 | 0.007 | 0.029 | 0.023 | -0.010 | 0.152 | -0.164 | 0.250 | 0.118 | |
Lh | 0.292 | 0.433 | -0.120 | 0.013 | 0.280 | -0.081 | -0.007 | 0.083 | -0.225 | -0.009 | 0.067 | -0.113 | -0.112 | 0.065 | |
Dp | 0.049 | 0.497 | -0.066 | -0.032 | -0.024 | -0.014 | 0.104 | -0.032 | -0.241 | 0.044 | -0.063 | -0.098 | -0.423 | -0.198 |
李少宁, 鲁绍伟, 刘斌, 等. 北京主要绿化树种叶表面微形态与PM2.5吸滞能力. 中南林业科技大学学报, 2017. 37 (8): 98- 107. | |
Li S N , Lu S W , Liu B , et al. Study on PM2.5 adsorption of different tree species in autumn in Beijing. Journal of Central South University of Forestry & Technology, 2017. 37 (8): 98- 107. | |
刘璐, 管东生, 陈永勤. 广州市常见行道树种叶片表面形态与滞尘能力. 生态学报, 2013. 33 (8): 2604- 2614. | |
Liu L , Guan D S , Chen Y Q . Morphological strcture of leaves and dust-retaining capability of common street trees in Guangzhou Municipality. Acta Ecological Sinica, 2013. 33 (8): 2604- 2614. | |
刘一超, 王萌, 梁琼, 等. 北京通州不同树种滞纳大气颗粒物的能力. 北京农学院学报, 2018. 33 (1): 84- 88. | |
Liu Y C , Wang M , Liang Q , et al. Study on atmospheric particulate matter adsorption capacity of different tree species in Tongzhou District of Beijing. Journal of Beijing University of Agriculture, 2018. 33 (1): 84- 88. | |
潘纯珍, 陈刚才, 杨清玲, 等. 重庆市地区道路PM10/PM2.5浓度分布特征研究. 西南农业大学学报:自然科学版, 2004. 26 (5): 576- 579. | |
Pan C Z , Chen G C , Yang Q L , et al. Study on the concentration distribution of PM10/PM2.5 related to traffic-busy road in Chongqing downtown area. Journal of Southwest Agricultural University:Natural Sciences, 2004. 26 (5): 576- 579. | |
石登红, 黄静, 杨爱玲, 等. 贵阳学院主要绿化植物滞尘能力的研究. 贵阳学院学报:自然科学版, 2014. 9 (1): 75- 78.
doi: 10.3969/j.issn.1673-6125.2014.01.021 |
|
Shi D H , Huang J , Yang A L , et al. Study on the dust catching property of the campus plants in Guiyang University. Journal of Guiyang College:Natural Sciences, 2014. 9 (1): 75- 78.
doi: 10.3969/j.issn.1673-6125.2014.01.021 |
|
王蕾, 哈斯, 刘连友, 等. 北京市春季天气状况对针叶树叶面颗粒物附着密度的影响. 生态学杂志, 2006. 25 (8): 998- 1002.
doi: 10.3321/j.issn:1000-4890.2006.08.025 |
|
Wang L , Ha S , Liu L Y , et al. Effects of weather condition in spring on particulates density on conifers leaves in Beijing. Chinese Journal of Ecology, 2006. 25 (8): 998- 1002.
doi: 10.3321/j.issn:1000-4890.2006.08.025 |
|
吴晓娟, 孙根年. 西安城区植被净化大气污染物的时间变化. 中国城市林业, 2006. 4 (6): 31- 33.
doi: 10.3969/j.issn.1672-4925.2006.06.011 |
|
Wu X J , Sun G N . Variation of atmosphere purification by vegetation among different time in a year in urban area of Xi'an. Journal of Chinese Urban Forestry, 2006. 4 (6): 31- 33.
doi: 10.3969/j.issn.1672-4925.2006.06.011 |
|
谢滨泽. 2015.城市绿地植物叶表面微结构及配置方式对其滞留PM2.5等颗粒物的影响.西安:西安建筑科技大学硕士学位论文. | |
Xie B Z. 2015. The retention capability of PM2.5 and its explanation by leaf surface micro-structure and configuration. Xi'an: MS thesis of Xi'an University of Architecture and Technology. | |
张家洋, 周君丽, 任敏, 等. 20种城市道路绿化树木的滞尘能力比较. 西北师范大学学报:自然科学版, 2013. 49 (5): 113- 120. | |
Zhang J Y , Zhou J L , Ren M , et al. Comparison of dust retention capacities by 20 urban road afforestation trees. Journal of Northwest Normal University:Natural Science, 2013. 49 (5): 113- 120. | |
张秀梅, 李景平. 城市污染环境中适生树种滞尘能力研究. 环境科学动态, 2001. (2): 27- 30.
doi: 10.3969/j.issn.1673-288X.2001.02.009 |
|
Zhang X M , Li J P . Study on dust retention ability of suitable tree species in urban polluted environment. Environmental Science Trends, 2001. (2): 27- 30.
doi: 10.3969/j.issn.1673-288X.2001.02.009 |
|
Bealey W J , Mcdonald A G , Nemitz E , et al. Estimating the reduction of urban PM concentrations by trees within an environmental information system for planners. Journal of Environmental Management, 2007. 85 (1): 44- 58. | |
Beckett K P , Freersmith P , Taylor G . Effective tree species for local air-quality management. Journal of Arboriculture, 2000a. 26 (1): 12- 19. | |
Beckett K P , Freersmith P , Taylor G . The capture of particulate pollution by trees at five contrasting urban sites. Arboricultural Association Journal, 2000b. 24 (2/3): 209- 230. | |
Beckett K P , Freer-Smith P H , Taylor G . Particulate pollution capture by urban trees:effect of species and windspeed. Global Change Biology, 2010. 6 (8): 995- 1003. | |
Dzierzanowski K , Popek R , Gawrońska H , et al. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. International Journal of Phytoremediation, 2011. 13 (10): 1037.
doi: 10.1080/15226514.2011.552929 |
|
Fowler D , Cape J N , Unsworth M H , et al. Deposition of atmospheric pollutants on forests:discussion. Philosophical Transactions of the Royal Society of London, 1989. 324 (1223): 247- 265. | |
Freer-Smith P , Beckett K , Taylor G . Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides×trichocarpa 'Beaupré', and Pinus nigra×Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment. Environmental Pollution, 2005. 133 (1): 157- 167.
doi: 10.1016/j.envpol.2004.03.031 |
|
Hofman J , Bartholomeus H , Calders K , et al. On the relation between tree crown morphology and particulate matter deposition on urban tree leaves:a ground-based LiDAR approach. Atmospheric Environment, 2014. 99 (12): 130- 139. | |
Hwang H J , Yook S J , Ahn K H . Experimental investigation of submicron and ultrafine soot particle removal by tree leaves. Atmospheric Environment, 2011. 45 (38): 6987- 6994.
doi: 10.1016/j.atmosenv.2011.09.019 |
|
Mori J , Hanslin H M , Burchi G , et al. Particulate matter and element accumulation on coniferous trees at different distances from a highway. Urban Forestry & Urban Greening, 2015. 14 (1): 170- 177. | |
Nguyen T , Yu X , Zhang Z , et al. Relationship between types of urban forest and PM2.5 capture at three growth stages of leaves. Journal of Environmental Sciences, 2015. 27 (1): 33- 41. | |
Nowak D J , Civerolo K L , Rao S T , et al. A modeling study of the impact of urban trees on ozone. Atmospheric Environment, 2000. 34 (10): 1601- 1613.
doi: 10.1016/S1352-2310(99)00394-5 |
|
Pretzsch H , Biber P , Uhl E , et al. Crown size and growing space requirement of common tree species in urban centres, parks, and forests. Urban Forestry & Urban Greening, 2015. 14 (3): 466- 479. | |
Sæbø A , Popek R , Nawrot B , et al. Plant species differences in particulate matter accumulation on leaf surfaces. Science of the Total Environment, 2012. 427-428 (2012): 347- 354. | |
Terzaghi E , Wild E , Zacchello G , et al. Forest filter effect:role of leaves in capturing/releasing air particulate matter and its associated PAHs. Atmospheric Environment, 2013. 74 (2): 378- 384. | |
Wang H , Shi H , Wang Y . Effects of weather, time, and pollution level on the amount of particulate matter deposited on leaves of Ligustrum lucidum. The Scientific World Journal, 2015. (8): 935- 942. | |
Weerakkody U , Dover J W , Mitchell P , et al. Evaluating the impact of individual leaf traits on atmospheric particulate matter accumulation using natural and synthetic leaves. Urban Forestry & Urban Greening, 2018. 30, 98- 107. | |
Wyse S V , Beggs J R , Burns B R , et al. Protecting trees at an individual level provides insufficient safeguard for urban forests. Landscape & Urban Planning, 2015. 141, 112- 122. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||