欢迎访问林业科学,今天是

林业科学 ›› 2025, Vol. 61 ›› Issue (5): 108-119.doi: 10.11707/j.1001-7488.LYKX20240047

• 研究论文 • 上一篇    下一篇

纳米氧化锌提高秋茄幼苗抗寒性的生理机制

殷雅欣,陈思意,李军建,单巧博,郑春芳*()   

  1. 温州大学生命与环境科学学院 温州325035
  • 收稿日期:2024-01-23 出版日期:2025-05-20 发布日期:2025-05-24
  • 通讯作者: 郑春芳 E-mail:20195101@wzu.edu.cn
  • 基金资助:
    国家自然科学基金项目(32071503)和温州市科技计划项目(S20220011)。

Physiological Mechanisms of ZnO NPs in Enhancing Cold Resistance of Kandelia obovata Seedlings

Yaxin Yin,Siyi Chen,Junjian Li,Qiaobo Shan,Chunfang Zheng*()   

  1. College of Life and Environmental Science, Wenzhou University Wenzhou 325035
  • Received:2024-01-23 Online:2025-05-20 Published:2025-05-24
  • Contact: Chunfang Zheng E-mail:20195101@wzu.edu.cn

摘要:

目的: 以红树植物秋茄为试材,探讨纳米氧化锌(ZnO NPs)提高红树林抗寒作用的机制,为生长在北缘红树林安全越冬或向更高纬度引种提供重要的技术支撑。方法: 采用叶面喷施方式,筛选秋茄幼苗适宜质量浓度的ZnO NPs;之后,幼苗进行连续3天早晚喷施适宜质量浓度ZnO NPs的预处理,在8 ℃(昼)/?3 ℃(夜)环境低温胁迫3 天,测定光合速率、抗氧化酶活性、褪黑素(MEL)合成途径等生理指标。结果: 随着ZnO NPs质量浓度增加,低温胁迫下秋茄幼苗净光合速率(Pn)和内源褪黑素质量分数均呈先升后降的趋势,其中,200 mg·L?1效果最佳。低温胁迫显著降低秋茄叶片内源MEL和一氧化氮(NO)含量,提高超氧阴离子(${\mathrm{O}}_2^{\overline{\;\cdot\; }} $)和过氧化氢(H2O2)含量,从而抑制植株光合作用。叶片喷施200 mg·L?1 ZnO NPs能有效提高低温胁迫下秋茄幼苗MEL合成途径中N-乙酰5-羟色胺甲基转移酶(ASMT)、色氨酸脱羧酶(TDC)2种重要合成酶活性,促进秋茄幼苗色氨酸合成褪黑素过程中各种中间产物(色胺、5 -羟色胺、5 -甲氧基色胺等)的产生。同时,ZnO NPs不仅有效提高低温胁迫下秋茄幼苗叶片抗氧化酶活性,减少${\mathrm{O}}_2^{\overline{\;\cdot\; }} $和H2O2含量,而且还会使低温胁迫下叶片H2O2激活硝酸还原酶(NR),促进NR活性催化NO2?产生更多的NO,最终提高秋茄幼苗光合作用,这与其褪黑素合成途径有紧密关系。结论: ZnO NPs通过调控低温胁迫下秋茄幼苗MEL/ ROS/活性氮(RNS)氧化还原网络增强植株抗寒能力。此外,ZnO NPs可能诱导低温胁迫下秋茄幼苗以色氨酸/色胺/ 5 -羟色胺/ 5 -甲氧基色胺/褪黑素为主的合成途径。

关键词: 纳米氧化锌, 低温胁迫, 红树林, 褪黑素合成途径, 活性氧, 活性氮, 光合作用

Abstract:

Objective: With the mangrove plant Kandelia obovata as the test material, this study investigated the mechanism by which nano zinc oxide (ZnO NPs) enhances the cold resistance of K. obovata seedlings, providing crucial technical support for the safe overwintering of mangroves on the northern margin or in higher latitudes. Method: K. obovata seedlings were pre-treated with foliar spraying method with varying concentrations of ZnO NPs to determine the optimal application concentration. Seedlings were then sprayed with optimal concentration of ZnO NPs twice daily in the morning and evening for 3 days, followed by exposure to low-temperature stress at 8 ℃ (day)/–3 ℃ (night) for 3 days. Physiological indices such as photosynthetic rate, antioxidant enzyme activity, and melatonin (MEL) synthesis pathway were measured. Result: The leaf net photosynthetic rate (Pn) and melatonin (MEL) content of seedlings initially increased and then decreased with increasing ZnO NP concentration, with 200 mg·L?1 being the optimal concentration under low-temperature stress. Low-temperature stress significantly decreased endogenous MEL and nitric oxide (NO) contents and increased contents of superoxide anion (${\mathrm{O}}_2^{\overline{\;\cdot\; }} $) and hydrogen peroxide (H2O2), thereby inhibiting photosynthesis. Spraying treatment with 200 mg·L?1 ZnO NPs on leaves was able to effectively increase the activities of N-acetylserotonin methyltransferase (ASMT) and tryptophan decarboxylase (TDC) in the MEL synthesis pathway of K. obovata seedlings under low temperature stress, and promote the production of various intermediate products (tryptamine, 5-hydroxytryptamine, and 5-methoxytryptamine) in the synthesis process of melatonin from tryptophan. Additionally, ZnO NPs not only effectively increased antioxidant enzyme activities, reduced ${\mathrm{O}}_2^{\overline{\;\cdot\; }} $ and H2O2 contents, but also activated nitrate reductase (NR) activity by H2O2 in the leaves under low temperature stress, promoting NO2? production, and ultimately improving photosynthesis, which is closely related to the melatonin synthesis pathway. Conclusion: ZnO NPs enhances the cold resistance of K. obovata seedlings by regulating the MEL/ROS/ reactive nitrogen species (RNS) redox network under low-temperature stress. ZnO NPs may induce the tryptophan/tryptamine/5-hydroxytryptamine/5-methoxytryptamine/melatonin synthesis pathway in K. obovata seedlings under low-temperature stress, influencing the redox network formed by melatonin, ROS, and RNS.

Key words: ZnO NPs, low temperature stress, mangroves, melatonin synthesis pathway, ROS, RNS, photosynthesis

中图分类号: