李春明,张会儒. 2010. 利用非线性混合模型模拟杉木林优势木平均高.林业科学,46(3): 89-95.
(Li C M, Zhang H R. 2010. Modeling dominant height for Chinese fir plantation using a nonlinear mixed-effects modeling approach. Scientia Silvae Sinicae, 46(3): 89-95.[in Chinese])
李永慈,唐守正. 2004. 用Mixed和Nlmixed过程建立混合生长模型.林业科学研究,17(3): 279-283.
(Li Y C, Tang S Z. Establishment of tree height growth model based on mixed and nlmixed of SAS. Forest Research, 17(3): 279-283.[in Chinese])
吕 萍,朱 钰. 2009. 基于最佳线性无偏估计的模型权数的小域估计.统计与决策,(1): 9-11.
(Lü P, Zhu Y. 2009. Estimate based on the number of best linear unbiased estimate of the model right small domains. Statistics & Decision, (1): 9-11.[in Chinese])
孟宪宇. 1994. 测树学.2版.北京:中国林业出版社.
(Meng X Y.1944. Forest mensuration. 2nd edition.Beijing: China Forestry Publishing House.[in Chinese])
赵 磊,倪成才,Gordon Nigh. 2012. 加拿大哥伦比亚省美国黄松广义代数分型地位指数模型.林业科学,48(3): 74-81.
(Zhao L, Ni C C, Nigh G. 2012. Generalized algebraic difference site index model for ponderosa pine in British Columbia,Canada. Scientia Silvae Sinicae, 48(3): 74-81.[in Chinese])
Bailey R L, Clutter J L.1974. Base-age invariant polymorphic sitecurves.Forest Science, 20(2): 155-159.
Calegario N, Daniels R F, Maestri R,et al.2005. Modeling dominant height growth based on nonlinear mixed-effects model: a clonal eucalyptus plantation case study.Forest Ecology and Management, 204(1): 11-21.
Cieszewski C J, Bailey R L.2000a. Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes.Forest Science,46(1): 116-126.
Cieszewski C J, Harrison M,Martin S T. 2000b.Examples of practicalmethods for unbiased parameter estimation in self-referencingfunction//Cieszewski C J. Proceedings of the first international conferenceon measurements and quantitative methods management.Jekyll Island, Georgia,November 17-18.
Clutter J L. 1963. Compatible growth and yield models for loblolly pine.Forest Science,9(3): 354-371.
Davidian M, Giltinan D M.1995.Nonlinear models for repeated measurement data. Chapman and Hall, London,62: 359.
Fang Z, Bailey R L. 2001. Nonlinear mixed effects modeling for slash pine Dominant height growth following intensive silvi cultural treatments. Forest Science,47(3): 287-300.
Hall D B,Bailey R L. 2001. Modeling and prediction of forest growth variables based on multilevel nonlinear mixed models. For Sci,47(3):311-321.
Hall D B,Clutter M. 2004. Multivariate multilevel nonlinear mixed effects models for timber yield predictions. Biometrics,60(1):16-24.
Huang S, Meng S X,Yang Y. 2009a. Estimating a non-linear mixed volume-age model with and without taking into account serially-correlated errors: differences and implications. Modern Appl Sci, 3(5):3-20.
Huang S, Wiens D P, Yang Y, et al. 2009b. Assessing the impacts of species composition, top height and density on individual tree height prediction of quaking aspen in boreal mixedwoods. For Ecol Manage, 258(7):1235-1247.
Jiang L,Li Y. 2010. Application of nonlinear mixed-effects modeling approach in tree height prediction. J Computers,5(10):1575-1580.
Lappi J, Bailey R L. 1988. A height prediction model with random stand and tree parameter: an alternative to traditional site methods. Forest Science,34(4): 907-927.
Littell R C, Milliken G A, Stroup W W, et al. 1966. SAS system for mixed models. SAS Institute Inc. Cary, NC, 633.
Meng S X,Huang S. 2009. Improved calibration of nonlinear mixed-effects models demonstrated on a height growth function. For Sci,55(3):238-248.
Meng S X, Huang S, Yang Y, et al. 2009. Evaluation of population-averaged and subject-specific approaches for modeling the dominant or codominant height of lodgepole pine trees. Can J For Res, 39(6): 1148-1158.
Ni C C,Nigh G. 2011. An analysis and comparison of predictors of random parameters demonstrated on planted loblolly pine diameter growth prediction. Forestry, 85(2): 271-280.
Nigh G. 2004. A comparison of fitting techniques for ponderosa pine height-age models in British Columbia. Ann For Sci,61(7): 609-615.
Pinheiro J C, Bales D M. 2000. Mixed effects models in S and S-plus Springer Verlag. New York.
Tang S Z, Meng F R. 2001. Analyzing parameters of growth and yield models for Chinese Fir —145. provenances with a inearmixed approach.Silvae Genetica,50(3/4): 140-145.
Yang Y,Huang S. 2011. Comparison of different methods for fitting nonlinear mixed forest models and for making predictions. Can J For Res,41(8): 1671-1686. |