林业科学 ›› 2025, Vol. 61 ›› Issue (2): 142-151.doi: 10.11707/j.1001-7488.LYKX20240374
收稿日期:
2024-06-19
出版日期:
2025-02-25
发布日期:
2025-03-03
通讯作者:
李金花
E-mail:lijinh@caf.ac.cn
基金资助:
Tianxin Wang,Jinhong Niu,Mingrong Cao,Chenggong Liu,Jinhua Li*()
Received:
2024-06-19
Online:
2025-02-25
Published:
2025-03-03
Contact:
Jinhua Li
E-mail:lijinh@caf.ac.cn
摘要:
目的: 探析低氮胁迫下杨树杂交子代苗期性状适应性,筛选耐低氮能力强的优良基因型,为选育速生、适应性强的耐低氮性杨树新品种提供理论依据。方法: 以226个小黑杨×欧洲黑杨杂交子代为试验材料,利用温室盆栽方法,在低氮(LN)和正常供氮(NN)处理条件下,测定生长、叶片形态、叶绿素荧光参数和氮同位素参数性状,基于线性混合模型的限制最大似然/最佳线性无偏预测(REML/BLUP),分析性状遗传变异和估算遗传参数及育种值,利用多性状指数MGIDI法,对杂交子代进行基因型排序,综合评价供试杂交子代适应性。结果: 生长和叶片形态性状均值在两组供氮水平间差异显著,且LN﹤NN,大多数性状基因型效应为显著,基因型与供氮处理环境的交互效应(G×E)均为极显著,而叶绿素荧光参数的基因型和G×E效应均不显著。性状广义遗传力(
中图分类号:
王天欣,牛晋鸿,曹明嵘,刘成功,李金花. 低氮下小黑杨×欧洲黑杨杂交子代苗期性状遗传变异和选择[J]. 林业科学, 2025, 61(2): 142-151.
Tianxin Wang,Jinhong Niu,Mingrong Cao,Chenggong Liu,Jinhua Li. Genetic Variation and Selection of Seedling Traits in the Progeny of Populus simonigra × P. nigra under Low Nitrogen Condition[J]. Scientia Silvae Sinicae, 2025, 61(2): 142-151.
表1
生长、叶片形态和叶绿素荧光参数性状遗传参数和方差分量①"
遗传参数/变异来源 Genetic parameter/ Source of variation | 苗高 H2/cm | 地径 BD2/mm | 苗高 净增长量 HS/cm | 地径 净增长量 BDS/mm | 鲜质量 FW/g | 干质量 DW/g | 叶面积 LA/cm2 | 叶长 LL/cm | 叶宽 LW/cm | 叶周长 PER/cm | Fm/Fo | Fv/Fo | Fv/Fm | |
均值Mean | 低氮LN | 57.60 | 5.10 | 14.90 | 1.14 | 3.97 | 1.98 | 16.40 | 4.46 | 5.25 | 17.20 | 5.17 | 4.16 | 0.80 |
常氮NN | 68.00 | 5.80 | 24.20 | 1.95 | 4.24 | 2.17 | 18.00 | 5.21 | 5.72 | 18.70 | 5.19 | 4.18 | 0.81 | |
t检验t test | <0.001*** | <0.001*** | <0.001*** | <0.001*** | 0.008*** | 0.009** | <0.001*** | <0.001*** | 0.700 | <0.001*** | 0.093 | 0.096 | 0.047* | |
表型变异 系数 CV (%) | 低氮LN | 31.50 | 29.90 | 54.40 | 56.40 | 36.40 | 39.00 | 26.50 | 23.20 | 12.10 | 24.30 | 11.90 | 14.80 | 3.30 |
常氮NN | 30.00 | 26.20 | 42.60 | 36.90 | 35.50 | 34.80 | 24.80 | 21.60 | 12.50 | 23.60 | 11.30 | 14.00 | 2.90 | |
广义遗传力h2ɡ | 0.24 | 0.22 | 0.08 | 0.000 | 0.38 | 0.36 | 0.10 | 0.000 | 0.23 | 0.09 | 0.01 | 0.01 | 0.000 | |
均值遗传力h2ɡm | 0.49 | 0.47 | 0.18 | 0.000 | 0.56 | 0.53 | 0.23 | 0.000 | 0.44 | 0.20 | 0.05 | 0.05 | 0.000 | |
选择准确性Ac | 0.70 | 0.69 | 0.42 | 0.75 | 0.73 | 0.48 | 0.66 | 0.45 | 0.24 | 0.22 | 0.000 | |||
基因型-环境相关系数rɡe | 0.52 | 0.46 | 0.66 | 0.42 | — | — | 0.69 | 0.50 | 0.65 | 0.66 | 0.000 | 0.000 | 0.000 | |
遗传变异系数CVɡ (%) | 14.50 | 10.1 | 12.5 | 0.003 | 22.30 | 22.10 | 7.98 | 0.005 | 5.91 | 7.15 | 0.12 | 1.33 | 0.000 | |
固定效应 Fixed effect | ||||||||||||||
处理(环境)ENV | 52*** | 60.2*** | 7.15* | 3.66** | 129*** | 56.8*** | 0.147 | 78.3*** | 0.262 | 0.222 | 0.001 | |||
重复REP | 11 900*** | 39.8*** | 10.3*** | — | — | 4.33 | 0.626 | 0.121 | 6.26 | 0.302 | 0.286 | 0.001 | ||
随机效应 Random effect | ||||||||||||||
基因型GEN | 82.3*** | 0.304*** | 6.0 | 0.000 | 0.838*** | 0.208*** | 1.91 | 0.000 | 0.097*** | 1.63 | 0.003 | 0.003 | 0.000 | |
基因型×环境G×E | 133.0*** | 0.494*** | 47.7*** | 0.261*** | — | — | 11.3*** | 0.576*** | 0.208*** | 11.1*** | 0.000 | 0.000 | 0.000 |
图1
生长、叶片形态和叶绿素荧光参数性状方差分量占比百分率 H2:苗高Plant height;BD2:地径Base diameter;HS:苗高净增长量Net increase in plant height;BDS:地径净增长量Net increase in base diameter; LA:叶面积Leaf area;LL:叶长Leaf length;LW:叶宽Leaf width;PER:叶周长Leaf perimeter;Fm/Fo:PSⅡ捕获激发能的效率Efficiency of PSII in capturing excitation energy;Fv/Fo:PSII潜在活性Potential PSII activity;Fv/Fm:PSⅡ的最大光合效率Maximum photosynthetic efficiency of PSII."
表2
PCA主成分所解释的特征值、方差比率和累计贡献率"
主成分 Principal component | 特征值 Eigenvalue | 特征值方差比率 Eigenvalue (%) | 特征值累计 方差贡献率 Cumulative variance (%) |
PC1 | 4.650 | 31.000 | 31.016 |
PC2 | 3.450 | 23.000 | 54.016 |
PC3 | 3.010 | 20.000 | 74.016 |
PC4 | 1.510 | 10.100 | 84.116 |
PC5 | 0.939 | 6.260 | 90.376 |
PC6 | 0.597 | 3.980 | 94.356 |
PC7 | 0.316 | 2.110 | 96.466 |
PC8 | 0.189 | 1.260 | 97.726 |
PC9 | 0.144 | 0.958 | 98.684 |
PC10 | 0.078 | 0.521 | 99.572 |
PC11 | 0.055 | 0.367 | 99.881 |
PC12 | 0.046 | 0.309 | 99.880 9 |
PC13 | 0.018 | 0.119 | 99.999 948 |
PC14 | 0.000 007 090 | 0.000 047 20 | 99.999 996 |
PC15 | 0.000 000 661 | 0.000 004 41 | 100.000 000 |
表3
杂交子代性状育种值和观测值因子分析①"
性状 Traits | 第1因子 FA1 | 第2因子 FA2 | 第3因子 FA3 | 第4因子 FA4 | 公因子方差 Communality |
苗高 H2 | –0.95 | 0.07 | 0.05 | –0.05 | 0.90 |
地径 BD2 | –0.92 | –0.03 | 0.12 | –0.02 | 0.86 |
苗高净增长量 HS | –0.88 | 0.07 | –0.04 | –0.07 | 0.78 |
地径净增长量 BDS | –0.75 | 0.03 | 0.13 | –0.07 | 0.58 |
叶面积 LA | –0.01 | –0.97 | –0.04 | 0.07 | 0.94 |
叶长 LL | –0.04 | –0.73 | –0.04 | –0.01 | 0.54 |
叶宽 LW | –0.04 | –0.86 | 0.06 | 0.04 | 0.74 |
叶周长 PER | –0.05 | –0.94 | –0.02 | 0.09 | 0.90 |
鲜质量 FW | –0.82 | –0.18 | 0.00 | 0.06 | 0.71 |
干质量 DW | –0.82 | –0.16 | 0.01 | 0.01 | 0.70 |
氮同位素比值 δ15N | –0.07 | 0.01 | 1.00 | 0.00 | 1.00 |
氮元素含量 N content | 0.07 | –0.09 | –0.55 | 0.82 | 0.99 |
氮同位素比率 15N/14N | –0.07 | 0.01 | 1.00 | 0.00 | 1.00 |
15N原子百分比 AT15N | –0.07 | 0.01 | 1.00 | 0.00 | 1.00 |
15N丰度 15N abundance | 0.05 | –0.09 | 0.22 | 0.97 | 0.99 |
表4
MGIDI指数中选子代基因型性状选择差和遗传增益①"
性状 Trait | 因子 Factor | 总体均值 Xo | 中选基因 型均值 Xs | 选择差 SD | 遗传增益 GG(%) |
苗高 H2 | FA1 | 63.40 | 67.30 | 3.94 | 6.23 |
苗高净增长量 HS | FA1 | 19.60 | 20.10 | 0.55 | 2.78 |
地径 BD2 | FA1 | 5.50 | 5.76 | 0.26 | 4.76 |
地径净增长量 BDS | FA1 | 1.54 | 1.63 | 0.09 | 5.84 |
鲜质量 FW | FA1 | 4.16 | 4.71 | 0.55 | 13.30 |
干质量 DW | FA1 | 2.10 | 2.36 | 0.27 | 12.70 |
叶面积 LA | FA2 | 17.30 | 17.70 | 0.39 | 2.24 |
叶长 LL | FA2 | 4.99 | 5.09 | 0.10 | 2.00 |
叶宽 LW | FA2 | 5.27 | 5.40 | 0.13 | 2.53 |
叶周长 PER | FA2 | 17.90 | 18.30 | 0.36 | 1.99 |
氮同位素比值 δ15N | FA3 | 2.57 | 2.91 | 0.34 | 13.40 |
氮同位素比率 15N/14N | FA3 | 1.31 | 1.44 | 0.13 | 9.63 |
15N原子百分比 AT15N | FA3 | 1.29 | 1.42 | 0.12 | 9.49 |
氮元素含量 N content | FA4 | 1.69 | 1.80 | 0.11 | 6.63 |
15N丰度 15N abundance | FA4 | 0.21 | 0.25 | 0.04 | 16.50 |
方升佐. 中国杨树人工林培育技术研究进展. 应用生态学报, 2008, 19 (10): 2308- 2316. | |
Fang S Z. Silviculture of poplar plantation in China. Chinese Journal of Applied Ecology, 2008, 19 (10): 2308- 2316. | |
国家林业和草原局. 2019. 中国森林资源报告(2014—2018). 北京: 中国林业出版社. | |
National Forestry and Grassland Administration. 2019. China forest resources report 2014–2018. Beijing: China Forestry Publishing House. [in Chinese] | |
康向阳. 林木遗传育种研究进展. 南京林业大学学报(自然科学版), 2020, 44 (3): 1- 10. | |
Kang X Y. Research progress of forest genetics and tree breeding. Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44 (3): 1- 10. | |
李金花. 基于BLUP和GGE双标图的黑杨派无性系生长性状基因型与环境互作效应. 林业科学, 2021, 57 (6): 64- 73. | |
Li J H. Genotype by environment interaction for growth traits of clones of Populus section Aigeiros based on BLUP and GGE biplot. Scientia Silvae Sinicae, 2021, 57 (6): 64- 73. | |
连 盈, 卢 娟, 胡成梅, 等. 低氮胁迫对谷子苗期性状的影响和耐低氮品种的筛选. 中国生态农业学报, 2020, 28 (4): 523- 534. | |
Lian Y, Lu J, Hu C M, et al. Effects of low nitrogen stress on foxtail millet seedling characteristics and screening of low nitrogen tolerant varieties. Chinese Journal of Eco-Agriculture, 2020, 28 (4): 523- 534. | |
林元震. 林木基因型与环境互作的研究方法及其应用. 林业科学, 2019, 55 (5): 142- 151. | |
Lin Y Z. Research methodologies for genotype by environment interactions in forest trees and their applications. Scientia Silvae Sinicae, 2019, 55 (5): 142- 151. | |
刘 宁, 丁昌俊, 李 波, 等. 12个欧美杨无性系生长初期基因型与环境的互作效应. 林业科学, 2020, 56 (8): 63- 72. | |
Liu N, Ding C J, Li B, et al. Effects of genotype by environment interaction of 12 Populus × euramericana clones in their early growth. Scientia Silvae Sinicae, 2020, 56 (8): 63- 72. | |
苏晓华, 丁昌俊, 马常耕. 我国杨树育种的研究进展及对策. 林业科学研究, 2010, 23 (1): 31- 37. | |
Su X H, Ding C J, Ma C G. Research progress and strategies of poplar breeding in China. Forest Research, 2010, 23 (1): 31- 37. | |
孙国语, 马晓雨, 易嘉欣, 等. 养分供给对黑青杨等杨树生长动态及养分分配的影响. 植物研究, 2021, 41 (5): 690- 699. | |
Sun G Y, Ma X Y, Yi J X, et al. Effects of nutrient supply on growth dynamics and nutrient allocation of poplars. Bulletin of Botanical Research, 2021, 41 (5): 690- 699. | |
王响玲, 宋柏权. 2020. 氮肥利用率的研究进展. 中国农学通报, 36(5): 93–97. | |
Wang X L, Song B Q. 2020. Nitrogen fertilizer use efficiency: research progress. Chinese Agricultural Science Bulletin. 36(5): 93–97. [in Chinese] | |
徐纬英. 1988. 杨树. 哈尔滨: 黑龙江人民出版社. | |
Xu W Y. 1988. Poplar. Harbin: Heilongjiang People’s Publishing House. [in Chinese] | |
严艳兵, 潘惠新. 美洲黑杨杂交子代苗期性状遗传变异及选择. 浙江农林大学学报, 2021, 38 (6): 1144- 1152. | |
Yan Y B, Pan H X. Genetic variation and selection of seedling traits in hybrid progeny of Populus deltoides. Journal of Zhejiang A & F University, 2021, 38 (6): 1144- 1152. | |
张 婧, 张伟溪, 丁昌俊, 等. 五个杨树品种生长、光合生理及根尖离子流速特性比较分析. 植物研究, 2024, 44 (1): 96- 106. | |
Zhang J, Zhang W X, Ding C J, et al. Comparative analysis of growth, photosynthetic physiology and root tip ion flow characteristics of five poplar varieties. Bulletin of Botanical Research, 2024, 44 (1): 96- 106. | |
Adewumi A S, Asare P A, Adejumobi I I, et al. Multi-trait selection index for superior agronomic and tuber quality traits in bush yam (Dioscorea praehensilis Benth.). Agronomy, 2023, 13 (3): 682.
doi: 10.3390/agronomy13030682 |
|
Alexandru A M, Mihai G, Stoica E, et al. Multi-trait selection and stability in Norway spruce (Picea abies) provenance trials in Romania. Forests, 2023, 14 (3): 456- 470.
doi: 10.3390/f14030456 |
|
Bisoffi S, Gullberg U. 1996. Poplar breeding and selection strategies//Stettler R F, Branshaw H D, Heilman P E, et al. eds. Biology of Populus and its implications for management and conservation. Part I, Chapter 6. Ottawa: Research Press of National Research Council of Canada, 139–158. | |
Caique M S, Henrique C M, João P O R, et al. Multi-trait selection of wheat lines under drought-stress condition. Plant Breeding, 2023, 82 (41): 1678- 1692. | |
Chen C, Chu Y G, Huang Q J, et al. Morphological, physiological, and transcriptional responses to low nitrogen stress in Populus deltoides Marsh. clones with contrasting nitrogen use efficiency. BMC Genomics, 2021, 22 (1): 697.
doi: 10.1186/s12864-021-07991-7 |
|
Chen C, Chu Y G, Huang Q J, et al. Morphological and physiological plasticity response to low nitrogen stress in black cottonwood (Populus deltoides Marsh.). Journal of Forestry Research, 2022, 33 (1): 697. | |
Hu Y B, Li C M, Jiang L P, et al. Growth performance and nitrogen allocation within leaves of two poplar clones after exponential and conventional nitrogen applications. Plant Physiology and Biochemistry, 2020, 154, 530- 537.
doi: 10.1016/j.plaphy.2020.06.053 |
|
Kalcsits L A, Guy R D. Genotypic variation in nitrogen isotope discrimination in Populus balsamifera L. clones grown with either nitrate or ammonium. Journal of Plant Physiology, 2016a, 201, 54- 61.
doi: 10.1016/j.jplph.2016.06.016 |
|
Kalcsits L A, Guy R D. 2016b. Variation in fluxes estimated from nitrogen isotope discrimination corresponds with independent measures of nitrogen flux in Populus balsamifera L. Plant, Cell & Environment, 39(2): 310–319. | |
Lee S H, Clark S, van der Werf J H J. Estimation of genomic prediction accuracy from reference populations with varying degrees of relationship. PLoS ONE, 2017, 12 (12): e0189775.
doi: 10.1371/journal.pone.0189775 |
|
Liu X J, Zhang Y, Han W X, et al. Enhanced nitrogen deposition over China. Nature, 2013, 494 (7438): 459- 462.
doi: 10.1038/nature11917 |
|
Luo J, Zhou J, Li H, et al. Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess. Tree Physiology, 2015, 35 (12): 1283- 1302.
doi: 10.1093/treephys/tpv091 |
|
Luo J, Zhou J J. Growth performance, photosynthesis, and root characteristics are associated with nitrogen use efficiency in six poplar species. Environmental and Experimental Botany, 2019, 164, 40- 51.
doi: 10.1016/j.envexpbot.2019.04.013 |
|
McKown A D, Guy R D, Klápště J, et al. Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa. New Phytologist, 2014, 201 (4): 1263- 1276.
doi: 10.1111/nph.12601 |
|
Monclus R, Dreyer E, Villar M, et al. Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides × Populus nigra. New Phytologist, 2006, 169 (4): 765- 777.
doi: 10.1111/j.1469-8137.2005.01630.x |
|
Novaes E, Osorio L, Drost D R, et al. Quantitative genetic analysis of biomass and wood chemistry of Populus under different nitrogen levels. New Phytologist, 2009, 182 (4): 878- 890.
doi: 10.1111/j.1469-8137.2009.02785.x |
|
Olivoto T, Diel MI, Schmidt D, et al. 2021a. Multivariate analysis of strawberry experiments: where are we now and where can we go? BioRxiv https://doi.org/10.1101/2020.12.30.424876. | |
Olivoto T, Diel M I, Schmidt D, et al. MGIDI: a powerful tool to analyze plant multivariate data. Plant Methods, 2022, 18 (1): 121. | |
Olivoto T, Lucio A D. metan: an R package for multi-environment trial analysis. Methods in Ecology and Evolution, 2020, 11 (6): 783- 789.
doi: 10.1111/2041-210X.13384 |
|
Olivoto T, Nardino M. MGIDI: toward an effective multivariate selection in biological experiments. Bioinformatics, 2021b, 37 (10): 1383- 1389.
doi: 10.1093/bioinformatics/btaa981 |
|
Ouattara F, Agre P A, Adejumobi I I, et al. Multi-trait selection index for simultaneous selection of water yam (Dioscorea alata L.) genotypes. Agronomy, 2024, 14 (1): 128.
doi: 10.3390/agronomy14010128 |
|
Rocha J R A S C, Machado J C, Carneiro P C S. Multitrait index based on factor analysis and ideotype-design: proposal and application on elephant grass breeding for bioenergy. GCB Bioenergy, 2018, 10 (1): 52- 60.
doi: 10.1111/gcbb.12443 |
|
Silva C M, Mezzomo H C, Ribeiro J P O, et al. Multi-trait selection of wheat lines under drought-stress condition. Bragantia, 2023, 82, e20220254.
doi: 10.1590/1678-4499.20220254 |
|
Singamsetti A, Zaidi P H, Seetharam K, et al. Genetic gains in tropical maize hybrids across moisture regimes with multi-trait-based index selection. Frontiers in Plant Science, 2023, 14, 1147424.
doi: 10.3389/fpls.2023.1147424 |
|
Song J Y, Wang Y, Pan Y H, et al. The influence of nitrogen availability on anatomical and physiological responses of Populus alba × P. glandulosa to drought stress. BMC Plant Biology, 2019, 19 (1): 63.
doi: 10.1186/s12870-019-1667-4 |
|
Uddin M S, Billah M, Afroz R, et al. Evaluation of 130 eggplant (Solanum melongena L.) genotypes for future breeding program based on qualitative and quantitative traits, and various genetic parameters. Horticulturae, 2021, 7 (10): 376.
doi: 10.3390/horticulturae7100376 |
|
Vaezi B, Pour-Aboughadareh A, Mohammadi R, et al. Integrating different stability models to investigate genotype × environment interactions and identify stable and high-yielding barley genotypes. Euphytica, 2019, 215 (4): 63.
doi: 10.1007/s10681-019-2386-5 |
|
White T L, Adans W T, Neale D B. 2007. Forest genetics. Cambridge: CABI Publishing. | |
Winfield M, Hughes F M R. Variation in Populus nigra clones: implications for river restoration projects in the United Kingdom. Wetlands, 2002, 22 (1): 33- 48.
doi: 10.1672/0277-5212(2002)022[0033:VIPNCI]2.0.CO;2 |
|
Zhang J Y, Liu P, Yang D W, et al. Planting six tree species on soda-saline-alkali soil. Journal of Forestry Research, 1998, 9 (4): 253- 255.
doi: 10.1007/BF02912329 |
|
Zhao X W, Nie G, Yao Y Y, et al. Natural variation and genomic prediction of growth, physiological traits, and nitrogen-use efficiency in perennial ryegrass under low-nitrogen stress. Journal of Experimental Botany, 2020, 71 (20): 6670- 6683.
doi: 10.1093/jxb/eraa388 |
[1] | 张磊,周星鲁,王丽娟,胡建军. 杨树抗虫分子育种与转基因生物安全评价研究进展[J]. 林业科学, 2025, 61(2): 190-203. |
[2] | 杨玲玉,石文广,罗志斌. 外生菌根真菌卷边桩菇促进宿主灰杨氮吸收利用特征[J]. 林业科学, 2024, 60(9): 69-79. |
[3] | 邱啸林,王姝敏,余璐,杨宇辰,熊典广,田呈明. 杨树腐烂病菌SNARE蛋白CcNyv1的功能[J]. 林业科学, 2024, 60(9): 90-98. |
[4] | 王傲宇,郭有正,邓坦,刘洋,邸楠,段劼,李熙萌,席本野. 几种评价植物水分调节策略的方法对比——以毛白杨为例[J]. 林业科学, 2024, 60(8): 109-119. |
[5] | 徐磊,吴小云,律江,石云,朱梦洵,许行,张志强. 散射辐射比例对华北平原杨树人工林生态系统能量分配的影响[J]. 林业科学, 2024, 60(3): 100-110. |
[6] | 李茂瑾. 木麻黄速生抗风害性状的育种值预测与优良个体的初步选择[J]. 林业科学, 2024, 60(12): 92-100. |
[7] | 万家鸣,律江,石云,许行,张志强. 散射辐射对杨树人工林生态系统总初级生产力的影响[J]. 林业科学, 2023, 59(5): 1-10. |
[8] | 韩璐,赵涵,王薇,刘文辉,姜在民,蔡靖. 白杨杂交子代栓塞脆弱性分割及与生长的关系[J]. 林业科学, 2023, 59(3): 94-103. |
[9] | 王卫锋,赵瑜琦,高苗琴,宗毓铮,郝兴宇. 群众杨幼苗叶光合特性与碳氮分配对CO2浓度和气温升高的响应[J]. 林业科学, 2023, 59(2): 40-47. |
[10] | 赵蕊蕊,刘勇,王凯. 生物炭和有机肥对毛白杨人工林地木质分解及土壤养分循环相关酶活性的影响[J]. 林业科学, 2023, 59(11): 1-11. |
[11] | 王薇,赵涵,黄欣,侯卓梁,姜在民,蔡靖. 白杨无性系叶片水力及经济性状与生物量的关系[J]. 林业科学, 2023, 59(10): 89-98. |
[12] | 陈赢男,胡传景,诸葛强,胡建军,尹佟明. 杨树农杆菌遗传转化研究30年[J]. 林业科学, 2022, 58(12): 114-129. |
[13] | 张伟溪,王颜波,丁昌俊,朱文旭,苏晓华. 成龄转基因银中杨试验林外源基因水平转移及土壤微生物连年监测[J]. 林业科学, 2022, 58(1): 52-61. |
[14] | 唐芳,赵树堂,王丽娟,宋学勤,卢孟柱. 毛白杨次生维管系统再生过程的基因表达[J]. 林业科学, 2021, 57(9): 52-65. |
[15] | 李雪燕,熊典广,田呈明. 杨树腐烂病菌胞外分泌复合体亚基CcExo70的功能[J]. 林业科学, 2021, 57(8): 82-93. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||