林业科学 ›› 2025, Vol. 61 ›› Issue (2): 190-203.doi: 10.11707/j.1001-7488.LYKX20240263
张磊1,2,周星鲁1,2,王丽娟1,2,胡建军1,2,*()
收稿日期:
2024-05-12
出版日期:
2025-02-25
发布日期:
2025-03-03
通讯作者:
胡建军
E-mail:hujj@caf.ac.cn
基金资助:
Lei Zhang1,2,Xinglu Zhou1,2,Lijuan Wang1,2,Jianjun Hu1,2,*()
Received:
2024-05-12
Online:
2025-02-25
Published:
2025-03-03
Contact:
Jianjun Hu
E-mail:hujj@caf.ac.cn
摘要:
杨树因速生、适应范围广等特点作为经济林、生态防护林和国家储备林建设树种,是实现“碳达峰、碳中和”双碳目标的重要固碳载体,但食叶害虫和蛀干害虫危害严重影响了杨树人工林生产力。因此,解析杨树抗虫分子机制、培育抗虫高产杨树新品种是杨树人工林发展的紧迫任务。本文首先概述了杨树通过形成叶片毛状体、提升木材硬度等物理防御以及内在酚苷、挥发性物质等次生代谢物和蛋白酶抑制剂等大分子物质快速响应以降低生物胁迫的分子机制研究进展;然后归纳了杨树杂交育种技术、转基因育种技术和多组学联合分析在杨树抗虫新品种培育和关键抗性位点和基因挖掘上的主要应用,并分析了抗虫转基因杨树生物安全评价方法和进展;最后提出未来应着重解析抗蛀干害虫分子机制,并围绕育种目标进一步融合传统杂交育种和转基因、基因编辑、全基因组选择等现代生物育种技术,实现抗虫、优质、高产多性状聚合育种。同时建立健全转基因和基因编辑杨树生物安全评价方法、法规,为杨树抗虫遗传改良和分子设计育种提供理论依据和实践基础。
中图分类号:
张磊,周星鲁,王丽娟,胡建军. 杨树抗虫分子育种与转基因生物安全评价研究进展[J]. 林业科学, 2025, 61(2): 190-203.
Lei Zhang,Xinglu Zhou,Lijuan Wang,Jianjun Hu. Advance of Poplar Molecular Breeding with Insect Resistance and Transgenic Biosafety Assessment Research[J]. Scientia Silvae Sinicae, 2025, 61(2): 190-203.
图1
杨树抗虫分子机制 AaIT:北非蚶蝎神经毒素Insect neurotoxin of Androctonus australis;API:慈姑蛋白酶抑制剂Arrowhead proteinase inhibitor;BtCry1Ac、BtCry1Ah、BtCry3Bb、BtCry9Aa3:Bt毒蛋白 Bt protein;Cpti:豇豆胰蛋白酶抑制剂Cowpea trypsin inhibitor;CYP71B40V3、CYP71B41V2、CYP79D6v3、CYP79D7v2:细胞色素P450酶Cytochrome P450;EGL3:Glabra3增强子Enhancer of Glabra3;GL1:R2R3型MYB转录因子R2R3 type MYB Glabra1;GL2:同源结构域-亮氨酸拉链家族转录因子Homeodomain-leucine zipper transcription factors Glabra2;GL3:基本螺旋-环-螺旋转录因子bHLH Glabra3;HAT1:同源结构域-亮氨酸拉链家族转录因子Homeodomain-leucine zipper transcription factors;JAZ:茉莉酸ZIM结构域Jasmonate ZIM-domain;MYC:髓细胞增生蛋白Myelocytomatosis oncogene protein;RGA:赤霉素阻遏物REPRESSOR OF ga1-3;SiJIG:基本螺旋-环-螺旋转录因子bHLH transcription factors;SPL:SQUAMOSA启动子结合样蛋白SQUAMOSA promoter-binding protein-like;TPS:萜类合成酶Terpene synthases;UGT71L1、UGT78M1:UDP-依赖性糖基转移酶UDP-glucose-dependent glycosyltransferases."
表1
抗虫转基因杨树信息表"
基因 Genes | 转化体 Variety | 靶标害虫 Target pest | 参考文献 Reference | 行政许可阶段 Administrative licensing stage |
BtCry1Ac | 欧洲黑杨 P. nigra | 杨尺蠖、舞毒蛾 A. cinerarius, L. dispar | 安全证书Safety certificate | |
BtCry1A | 健杨94 P. × euramericana cv. ‘Robusta 94’ | 舞毒蛾、膜肩网蝽 L. dispar, Hegesidemus habrus | 环境释放和生产性试验Environmental release and production test | |
BtCry1A | 中嘉8号 P. deltoides (I-63× I-69) | 杨扇舟蛾 C. anachoreta | ||
BtCry1A | 山新杨 P. davidiana × P. bolleana | 美国白蛾、舞毒蛾 H. cunea, L. dispar | ||
BtCry1Ah | 山新杨 P. davidiana × P. bolleana | 美国白蛾、舞毒蛾 H. cunea, L. dispar | ||
BtCry1Ah | 南林895 P. deltoides × P. euramericana ‘Nanlin 895’ | 美国白蛾 H. cunea | 中间试验Intermediate Experiment | |
BtCry3A | 741杨 P. alba × (P. davidiana + P. simonii) × P. tomentosa | 桑天牛 A. germari | 环境释放和生产性试验Environmental release and production test | |
BtCry3A | 84K杨 P. alba × P. glandulosa ‘84K’ | 光肩星天牛 A. glabripennis | ||
BtCry3Bb | 山新杨 P. davidiana × P. bolleana | 柳蓝叶甲 Plagiodera versicolora | ||
BtCry9Aa3 | 山新杨 P. davidiana × P. bolleana | 美国白蛾、舞毒蛾 H. cunea, L. dispar | ||
PeWRKY31 | 烟草 Nicotiana tabacum | 美国白蛾 H. cunea | ||
PeWRKY41 | 84K杨 P. alba × P. glandulosa ‘84K’ | 美国白蛾 H. cunea | ||
Cpti | 毛白杨 P. tomentosa | 美国白蛾 H. cunea | ||
Cpti | 新疆杨 P. alba var. pyramidalis | 杨尺蠖 A. cinerarius | ||
Cpti | 欧美杨107 P. × euramericana ‘Neva’ | 扁刺蛾 Thosea sinensis | ||
AaIT | 小叶杨×美洲黑杨N106 P. deltoides × P. simonii | 舞毒蛾 L. dispar | ||
BtCry1Ac + API | 741杨 P. alba × (P. davidiana + P. simonii) × P. tomentosa | 杨扇舟蛾 C. anachoreta | 安全证书Safety certificate | |
BtCry1Ac + API | 三倍体毛白杨 (P. tomentosa × P. bolleana) × P. tomentosa | 舞毒蛾、杨扇舟蛾 L. dispar, C. anachoreta | 中间试验Intermediate experiment | |
BtCry1Ac + API | 84K杨 P. alba × P. glandulosa ‘84K’ | 杨扇舟蛾 C. anachoreta | ||
BtCry1Ac + API | 欧美杨107 P. euramericana ‘Neva’ | 美国白蛾 H. cunea | ||
BtCry1Ac + Cpti | 美洲黑杨小叶杨杂种NL- P. deltoides × P. simonii ‘NL- | 舞毒蛾 L. dispar | ||
BtCry1Ac + BtCry3A | 比利尼杨 P. × euramericana cv. 'Bellini' | 柳蓝叶甲 P. versicolora | 环境释放和生产性试验Environmental release and production test | |
Bt + Cpti | 南林895 P. deltoides × P. euramericana ‘Nanlin 895’ | 杨小舟蛾 M. troglodyta | 中间试验Intermediate experiment | |
BtCry3A + Oc-i | 84K杨 P. alba × P. glandulosa ‘84K’ | 光肩星天牛 A. glabripennis | ||
BtCry3A + BtCry1Ac | 欧美杨107 P. × euramericana ‘Neva’ | 光肩星天牛 A. glabripennis | 环境释放和生产性试验Environmental release and production test | |
BtCry3A + PI | 欧洲黑杨 P. nigra | 舞毒蛾 L. dispar | ||
BtCry3Aa-P2 | 窄冠黑杨 P. deltoides ‘Lux’ × (P. deltoides ‘Shanhaiguan’ × P. simonii) ‘Zhaiguan’ | 山东农业大学 | 中间试验Intermediate experiment | |
BtCry3Aa-P2 | 窄冠黑杨 P. deltoides ‘Lux’ × (P. deltoides ‘Shanhaiguan’ × P. simonii) ‘Zhaiguan’ | 中国林业科学 研究院 | 中间试验Intermediate experiment | |
Bt-C肽+蜘蛛杀虫肽 | 小黑杨 P. × Xiaohei | 舞毒蛾、杨小舟蛾、杨扇舟蛾和 分月扇舟蛾 L. dispar, M. troglodyte, C. anachoreta, Clostera anastomosis | ||
Bt+蜘蛛杀虫肽 | 山新杨 P. davidiana × P. bolleana | |||
Bt+蜘蛛杀虫肽 | 欧美杨108 P × euramericana ‘Guariento’ | 舞毒蛾 L. dispar | ||
Chitinase-BmkIT | 青杨 P. cathayana | 美国白蛾 H. cunea | ||
BtCry1Ac + BtCry3A + API | 741杨 P. alba × (P. davidiana + P. simonii) × P. tomentosa | 柳蓝叶甲、美国白蛾 P. versicolora, H. cunea | 中间试验Intermediate experiment | |
BtCry1Ac + BtCry3A + BADH | 欧美杨107 P. × euramericana ‘Neva’ | 斜纹夜蛾 Spodoptera litura | 环境释放和生产性试验Environmental release and production test | |
BtCry1Ac + BtCry3A + NTHK1 | 欧美杨107 P. × euramericana ‘Neva’ | 斜纹夜蛾 S. litura | 环境释放和生产性试验Environmental release and production test | |
BtCry3A + BtCry1Ac + mtlD + BADH | 欧洲黑杨 P. nigra | 美国白蛾、斜纹夜蛾 H. cunea, S. litura | 中间试验Intermediate experiment |
曹庆杰, 迟德富, 宇 佳, 等. 10~11年生杨树品系抗杨干象水平及其与树干物理特性的关系. 林业科学研究, 2016, 29 (2): 183- 190. | |
Cao Q J, Chi D F, Yu J, et al. Relationship between resistance level of 10- and 11-year-old poplar strains to Cryptorrhynchus lapathi L. (Coleoptera: Curculionidae) and the physical properties of poplar trunk. Forest Research, 2016, 29 (2): 183- 190. | |
常玉广, 刘桂丰, 姜 静, 等. 小黑杨抗虫基因的遗传转化. 东北林业大学学报, 2004, 32 (6): 30- 31. | |
Chang Y G, Liu G F, Jiang J, et al. The genetic transformation of the genes resistant to insect for Populus xiaohei. Journal of Northeast Forestry University, 2004, 32 (6): 30- 31. | |
陈盼飞, 任亚超, 张 军, 等. 8年生嫁接转基因杨树Bt毒蛋白的表达与运输. 林业科学, 2016, 52 (7): 46- 52. | |
Chen P F, Ren Y C, Zhang J, et al. Expression and transportation of Bt toxic protein in 8-year-old grafted transgenic poplar. Scientia Silvae Sinicae, 2016, 52 (7): 46- 52. | |
国家林业和草原局. 2023. 中国林业和草原统计年鉴. 北京: 中国林业出版社, 106–107. | |
National Forestry and Grassland Administration. 2023. China forestry and grassland statistical yearbook. Beijing: China Forestry Publishing House, 106–107. [in Chinese] | |
郝贵霞, 朱 祯, 朱之悌. 转CpTI基因毛白杨的获得. 林业科学, 2000, 36 (S1): 116- 119. | |
Hao G X, Zhu Z, Zhu Z D. Obtaining of cowpea proteinase inhibitor transgenic Populus tomentosa. Scientia Silvae Sinicae, 2000, 36 (S1): 116- 119. | |
侯荣轩, 赵 烨, 田彦挺, 等. 实验田4年生转基因毛白杨嫁接苗和自根苗安全性研究. 林业科学研究, 2022, 35 (2): 56- 66. | |
Hou R X, Zhao Y, Tian Y T, et al. Study on safety of grafted and self-rooted seedlings of 4-year-old transgenic Populus tomentosa in trial plots. Forest Research, 2022, 35 (2): 56- 66. | |
胡建军, 杨敏生, 卢孟柱. 我国抗虫转基因杨树生态安全性研究进展. 生物多样性, 2010, 18 (4): 336- 345.
doi: 10.3724/SP.J.1003.2010.336 |
|
Hu J J, Yang M S, Lu M Z. Advances in biosafety studies on transgenic insect-resistant poplars in China. Biodiversity Science, 2010, 18 (4): 336- 345.
doi: 10.3724/SP.J.1003.2010.336 |
|
胡建军, 赵自成, 苏雪辉, 等. 杨树新品种‘中成1号’. 林业科学, 2014a, 50 (5): 159. | |
Hu J J, Zhao Z C, Su X H, et al. A new poplar variety of Populus deltoides ‘Zhongcheng 1’. Scientia Silvae Sinicae, 2014a, 50 (5): 159. | |
胡建军, 赵自成, 苏雪辉, 等. 杨树新品种‘中豫1号’. 林业科学, 2014b, 50 (7): 170. | |
Hu J J, Zhao Z C, Su X H, et al. A new poplar variety of Populus deltoides ‘Zhongyu 1’. Scientia Silvae Sinicae, 2014b, 50 (7): 170. | |
贾会霞, 孙 佩, 李建波, 等. 丹红杨×转BtCry1Ac欧洲黑杨杂交子代抗虫性及生长量测定. 分子植物育种, 2017, 15 (10): 4101- 4109. | |
Jia H X, Sun P, Li J B, et al. Insect-resistance and growth measurement of hybrid progeny from Populus deltoides cl. ‘Danhong’ and transgenic P. nigra with BtCry1Ac gene. Molecular Plant Breeding, 2017, 15 (10): 4101- 4109. | |
康 薇, 郑 进, 李 兵, 等. 转Bt基因杨树对杨扇舟蛾的抗性. 中国生物防治, 2009, 25 (2): 125- 128. | |
Kang W, Zheng J, Li B, et al. Resistance of transgenic Bt poplar to Clostera anachorta. Chinese Journal of Biological Control, 2009, 25 (2): 125- 128. | |
李会平, 黄大庄, 王志刚, 等. 杨树形态特征、组织结构与光肩星天牛危害的关系. 东北林业大学学报, 2004, 32 (6): 111- 112. | |
Li H P, Huang D Z, Wang Z G, et al. Relationships between morphological characteristics and tissue structure of poplars and damage by Anophora glabripennis Motsch. Journal of Northeast Forestry University, 2004, 32 (6): 111- 112. | |
李会平, 王志刚, 杨敏生, 等. 杨树单宁与酚类物质种类及含量与光肩星天牛危害之间关系的研究. 河北农业大学学报, 2003, 26 (1): 36- 39. | |
Li H P, Wang Z G, Yang M S, et al. The relation between tannin and phenol constituents and resistance to Anoplophora glabripennis of various poplar tree species. Journal of Hebei Agricultural University, 2003, 26 (1): 36- 39. | |
李科友, 樊军锋, 赵 忠, 等. 银腺杨转CryIAc和API双价抗虫基因的研究. 林业科学研究, 2007, 20 (5): 699- 704. | |
Li K Y, Fan J F, Zhao Z, et al. Transformation of CryIAc and API two insect-resistant genes to poplar (Populus alba × P. glandulosa). Forest Research, 2007, 20 (5): 699- 704. | |
李明亮, 张 辉, 胡建军, 等. 转Bt基因和蛋白酶抑制剂基因杨树抗虫性的研究. 林业科学, 2000, 36 (2): 93- 97. | |
Li M L, Zhang H, Hu J J, et al. Study on insect-resistant transgenic poplar plants containing both Bt and PI gene. Scientia Silvae Sinicae, 2000, 36 (2): 93- 97. | |
李淑梅, 张春玲, 胡建军, 等. 转基因抗虫杨树新品种‘健杨94’. 林业科学, 2008, 44 (7): 141. | |
Li S M, Zhang C L, Hu J J, et al. A new insect resistant transgenic poplar variety Populus × euramericana cv. ‘Robusta 94'. Scientia Silvae Sinicae, 2008, 44 (7): 141. | |
母连胜, 何 勇, 罗 岸, 等. 质体基因工程在植物育种中的应用研究进展. 河南农业科学, 2017, 46 (6): 1- 12. | |
Mu L S, He Y, Luo A, et al. Progress on application of plastid genetic engineering in plant breeding. Journal of Henan Agricultural Sciences, 2017, 46 (6): 1- 12. | |
饶红宇, 陈 英, 黄敏仁, 等. 杨树NL-80106转Bt基因植株的获得及抗虫性. 植物资源与环境学报, 2000, 9 (2): 1- 5. | |
Rao H Y, Chen Y, Huang M R, et al. Genetic transformation of poplar NL-80106 transferred by Bt gene and its insect-resistance. Journal of Plant Resources and Environment, 2000, 9 (2): 1- 5. | |
任敏霞, 李 探, 张子恒, 等. 转BtCry1Ac与API基因107杨对节肢动物群落多样性及稳定性的影响. 林业科学, 2022, 58 (4): 110- 118. | |
Ren M X, Li T, Zhang Z H, et al. Effects of transgenic BtCry1Ac and APl gene in poplar 107 on diversity and stability of arthropod community. Scientia Silvae Sinicae, 2022, 58 (4): 110- 118. | |
任亚超. 2013. 多基因植物转化载体对烟草和欧美杨107杨的遗传转化. 保定: 河北农业大学. | |
Ren Y C. 2013. Genetic transformation of tobacco and Populus × euramericana ‘Neva’ by multi-gene plant transformation vector. Baoding: Hebei Agricultural University. [in Chinese] | |
沈文静, 刘来盘, 方志翔, 等. 转基因杨树林下种植转基因棉花对转基因杨棉复合系统内节肢动物群落多样性的影响. 昆虫学报, 2021, 64 (10): 1187- 1195. | |
Shen W J, Liu L P, Fang Z X, et al. Effects of planting transgenic cotton beneath transgenic poplar trees on the diversity of arthropod community in the transgenic poplar-cotton composite system. Acta Entomologica Sinica, 2021, 64 (10): 1187- 1195. | |
田颖川, 李太元, 莽克强, 等. 抗虫转基因欧洲黑杨的培育. 生物工程学报, 1993, 9 (4): 291- 297, 395. | |
Tian Y C, Li T Y, Mang K Q, et al. Insect tolerance of transgenic Populus nigra plants transformed with Bacillus thuringiensis toxin gene. Chinese Journal of Biotechnology, 1993, 9 (4): 291- 297, 395. | |
王桂英, 杨敏生, 霍雪梅, 等. 741杨双Bt基因的遗传转化及转基因株系的抗虫性. 林业科学, 2012, 48 (9): 42- 49. | |
Wang G Y, Yang M S, Huo X M, et al. Transformation of 741 poplar with double Bt genes and the insect-resistance of the transgenic plant. Scientia Silvae Sinicae, 2012, 48 (9): 42- 49. | |
王连荣, 薛拥志, 张德健, 等. 2021. 转基因杨树嫁接苗中外源BtCry3A基因的表达及其产物运输. 分子植物育种, 19(9): 2906–2911. | |
Wang L R, Xue Y Z, Zhang D J, et al . 2020. Expression and products transportation of BtCry3A gene in the grafted seedlings of transgenic poplar. Molecular Plant Breeding, 19(9): 2906–2911. [in Chinese] | |
王 璞, 郭同斌, 魏 辉, 等. 转Bt基因‘南林895’杨对美国白蛾和杨小舟蛾抗虫性分析. 分子植物育种, 2020, 18 (14): 4645- 4656. | |
Wang P, Guo T B, Wei H, et al. Analysis of insect resistance of Bt-transgenic poplar (NL-895) to Hyphantria cunea and Micromelalopha troglodyte. Molecular Plant Breeding, 2020, 18 (14): 4645- 4656. | |
王欣玉, 刘勇波. 2020. 转基因植物与近缘种之间基因流的研究进展. 应用生态学报, 31(9): 3207–3215. | |
Wang X Y, Liu Y B. 2020. Research advances in gene flow between transgenic plants and their relatives. Chinese Journal of Applied Ecology, 31(9): 3207–3215. [in Chinese] | |
王云霖. 我国人工林发展研究. 林业资源管理, 2019, 2 (1): 6- 11. | |
Wang Y L. Review on China’s plantation development since the reform and opening up. Forest and Grassland Resources Research, 2019, 2 (1): 6- 11. | |
伍宁丰, 孙 芹, 姚 斌, 等. 抗虫的转AaIT基因杨树的获得. 生物工程学报, 2000, 16 (2): 13- 17. | |
Wu N F, Sun Q, Yao B, et al. Insect resistant transgenic poplar expressing AalT gene. Chinese Journal of Biotechnology, 2000, 16 (2): 13- 17. | |
谢 兴. 2010. 杨树枝条酚酸的提取与分析及其对青杨天牛的影响. 哈尔滨: 东北林业大学. | |
Xie X. 2010. Extraction and analysis of phenolic acids in poplar branches and their effect to Saperda populnea L. Harbin: Northeast Forestry University. [in Chinese] | |
杨利艳, 孙 毅, 谢莉琴. 转新型双价抗虫基因杨树对光肩星天牛及美国白蛾的抗性鉴定. 昆虫学报, 2008, 51 (8): 844- 848. | |
Yang L Y, Sun Y, Xie L Q. Bioassays of resistance of transgenic poplar with novel binary insect-resistant genes to Anoplophora glabripennis (Coleoptera: Cerambycidae) and Hyphantria cunea (Lepidoptera: Arctiidae). Acta Entomologica Sinica, 2008, 51 (8): 844- 848. | |
杨敏生, 李志兰, 王 颖, 等. 双抗虫基因对三倍体毛白杨的转化和抗虫性表达. 林业科学, 2006, 42 (9): 61- 68. | |
Yang M S, Li Z L, Wang Y, et al. Transformation and expression of two insect-resistant genes to hybrid triploid of Chinese white poplar. Scientia Silvae Sinicae, 2006, 42 (9): 61- 68. | |
杨艳丽, 刘兴菊, 刘桂林, 等. 双抗虫基因转化欧美杨107的研究. 北方园艺, 2012, (7): 120- 122. | |
Yang Y L, Liu X J, Liu G L, et al. Study on two insect-resistant gene transformation of poplar 107. Northern Horticulture, 2012, (7): 120- 122. | |
遇文婧, 邹传山, 王志英, 等. 欧美杨108号转蜘蛛杀虫肽与Bt毒蛋白嵌合基因的研究. 植物研究, 2009, 29 (5): 603- 606. | |
Yu W J, Zou C S, Wang Z Y, et al. Populus nigra × Populus deltoids "108" transformed the chimeric genes of spider insecticidal and Bt. Bulletin of Botanical Research, 2009, 29 (5): 603- 606. | |
张冰玉, 苏晓华, 李义良, 等. 转双价抗蛀干害虫基因杨树的获得及其抗虫性鉴定. 林业科学研究, 2005, 18 (3): 364- 368. | |
(Zhang B Y, Su X H, Li Y L, et al. Transformation of poplar (Populus alba × P. glandulosa cv. ‘84K’) with binary insect resistant genes and analysis of insect resistance. Forest Research, 2005, 18 (3): 364- 368. | |
张冰玉, 苏晓华, 李义良, 等. 转抗鞘翅目害虫基因银腺杨的获得及其抗虫性的初步研究. 北京林业大学学报, 2006, 28 (2): 102- 105. | |
Zhang B Y, Su X H, Li Y L, et al. Production of Populus alba × P. glandulosa with a coleopterous insect resistant gene and analysis of insect resistance. Journal of Beijing Forestry University, 2006, 28 (2): 102- 105. | |
张 阔, 魏建荣, 李 臻, 等. 杨树受机械损伤与光肩星天牛危害的防御性反应. 应用生态学报, 2021, 32 (11): 4139- 4146. | |
Zhang K, Wei J R, Li Z, et al. Defensive responses of Populus deltoides cl. Beikang to mechanical injury and Anoplophora glabripennis infection. Chinese Journal of Applied Ecology, 2021, 32 (11): 4139- 4146. | |
张 磊, 胡建军. 转BtCry1Ac欧洲黑杨的外源基因插入位点分析及特异性检测. 林业科学, 2020, 56 (10): 45- 52. | |
Zhang L, Hu J J. An analysis of T-DNA insertion loci and detection of the locus-specific of transgenic Populus nigra lines with BtCry1Ac. Scientia Silvae Sinicae, 2020, 56 (10): 45- 52. | |
张 娜, 刘志伟, 刘德广. 植物蛋白酶抑制剂的抗虫性研究进展. 植物保护, 2022, 48 (6): 238- 247, 277. | |
Zhang N, Liu Z W, Liu D G. Advances in plant protease inhibitors against insects. Plant Protection, 2022, 48 (6): 238- 247, 277. | |
张 旭. 2013. 抗虫耐盐多基因对烟草和107杨的遗传转化及表达研究. 保定: 河北农业大学. | |
Zhang X. 2013. Genetic transformation of the insect-resistant and salt-tolerant polygenes in tobacco and Populus × euramericana ‘Neva’ and the expression analysis. Baoding: Hebei Agricultural University. [in Chinese] | |
赵 强, 赵志文, 张廷婷, 等. 豇豆胰蛋白酶抑制剂(CpTI)基因转化欧美杨的研究. 生物技术通报, 2005, (4): 54- 58. | |
Zhao Q, Zhao Z W, Zhang T T, et al. Transformation of Populus euramericana with CpTI gene. Biotechnology Bulletin, 2005, (4): 54- 58. | |
甄志先, 李 静, 梁海永, 等. 转BtCry3A基因杨树毒蛋白表达及对桑天牛抗性的研究. 蚕业科学, 2007, 33 (4): 538- 542.
doi: 10.3969/j.issn.0257-4799.2007.04.004 |
|
Zhen Z X, Li J, Liang H Y, et al. Expressions of BtCry3A gene in transgenic polar and its resistance against Apriona germari. Acta Sericologica Sinica, 2007, 33 (4): 538- 542.
doi: 10.3969/j.issn.0257-4799.2007.04.004 |
|
郑均宝, 梁海永, 高宝嘉, 等. 转双抗虫基因741毛白杨的选择及抗虫性. 林业科学, 2000, 36 (2): 13- 19,129. | |
Zheng J B, Liang H Y, Gao B J, et al. Selection and insect resistance of transgenic hybrid poplar 741 carrying two insect/resistant genes. Scientia Silvae Sinicae, 2000, 36 (2): 13- 19,129. | |
周培军, 李玲玲, 李红岩, 等. 转Bt基因‘南林895’杨时空表达及生物安全分析. 分子植物育种, 2022, 20 (5): 1568- 1580. | |
Zhou P J, Li L L, Li H Y, et al. Spatio-temporal expression and biosafety analysis of transgenic 'Nanlin-895' poplar with Bt. Molecular Plant Breeding, 2022, 20 (5): 1568- 1580. | |
诸葛强, 房 丹, 李秀芬, 等. 美洲黑杨杂种优良无性系转抗虫基因(Bt和CpTⅠ)的研究. 分子植物育种, 2006, 4 (6): 819- 824. | |
Zhuge Q, Fang D, Li X F, et al. Transformation of Populus × euramericana cv. ‘Nanlin895’using Bt and CpTI insect-resistant genes. Molecular Plant Breeding, 2006, 4 (6): 819- 824. | |
诸葛强, 王婕琛, 陈 英, 等. 豇豆胰蛋白酶抑制剂(CpTI)抗虫转基因新疆杨的获得. 分子植物育种, 2003, 1 (4): 491- 496. | |
Zhuge Q, Wang J C, Chen Y, et al. Transgenic plantlets of Populus alba var. pyramidalis by transformation with CpTl gene. Molecular Plant Breeding, 2003, 1 (4): 491- 496. | |
左丽丽, 王志英, 梁 臣, 等. 山新杨转Bt+蜘蛛杀虫肽基因的分析. 东北林业大学学报, 2009, 37 (7): 112- 114. | |
Zuo L L, Wang Z Y, Liang C, et al. Transformation of Populus davidiana × P. bollena with Bt+spider toxin gene. Journal of Northeast Forestry University, 2009, 37 (7): 112- 114. | |
Barker H L, Riehl J F, Bernhardsson C, et al. Linking plant genes to insect communities: identifying the genetic bases of plant traits and community composition. Molecular Ecology, 2019, 28 (19): 4404- 4421.
doi: 10.1111/mec.15158 |
|
Barrios-San Martín J, Quiroz A, Verdugo J A, et al. Host selection and probing behavior of the poplar aphid Chaitophorus leucomelas (Sternorrhyncha: Aphididae) on two poplar hybrids with contrasting susceptibility to aphids. Journal of Economic Entomology, 2014, 107 (1): 268- 276.
doi: 10.1603/EC13282 |
|
Beaulieu J, Nadeau S, Ding C, et al. Genomic selection for resistance to spruce budworm in white spruce and relationships with growth and wood quality traits. Evolutionary Applications, 2020, 13 (10): 2704- 2722.
doi: 10.1111/eva.13076 |
|
Bewg W P, Harding S A, Engle N L, et al. Multiplex knockout of trichome-regulating MYB duplicates in hybrid poplar using a single gRNA. Plant Physiology, 2022, 189 (2): 516- 526.
doi: 10.1093/plphys/kiac128 |
|
Boeckler G A, Gershenzon J, Unsicker S B 2011. Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry, 72(13): 1497–1509. | |
Caccamo M. New precision-breeding law unlocks gene editing in England. Nature Biotechnology, 2023, 41 (6): 752- 753.
doi: 10.1038/s41587-023-01795-8 |
|
Carletti G, Carra A, Allegro G, et al. QTLs for woolly poplar aphid (Phloeomyzus passerinii L.) resistance detected in an inter-specific Populus deltoides × P. nigra mapping population. PLoS ONE, 2016, 11 (3): e0152569.
doi: 10.1371/journal.pone.0152569 |
|
Chen Q, Liang X, Wu C L, et al. Overexpression of leucoanthocyanidin reductase or anthocyanidin reductase elevates tannins content and confers cassava resistance to two-spotted spider mite. Frontiers in Plant Science, 2022, 13, 994866.
doi: 10.3389/fpls.2022.994866 |
|
Chen X H, Dong Y, Huang Y L, et al. Whole-genome resequencing using next-generation and Nanopore sequencing for molecular characterization of T-DNA integration in transgenic poplar 741. BMC Genomics, 2021, 22 (1): 329.
doi: 10.1186/s12864-021-07625-y |
|
Chen Y, Su D, Li J, et al. Overexpression of bHLH95, a basic helix-loop-helix transcription factor family member, impacts trichome formation via regulating gibberellin biosynthesis in tomato. Journal of Experimental Botany, 2020, 71 (12): 3450- 3462.
doi: 10.1093/jxb/eraa114 |
|
DeWoody J, Viger M, Lakatos F, et al. Insight into the genetic components of community genetics: QTL mapping of insect association in a fast-growing forest tree. PLoS ONE, 2013, 8 (11): e79925.
doi: 10.1371/journal.pone.0079925 |
|
Ding L P, Chen Y J, Wei X L, et al. Laboratory evaluation of transgenic Populus davidiana × Populus bolleana expressing Cry1Ac + SCK, Cry1Ah3, and Cry9Aa3 genes against Gypsy moth and fall webworm. PLoS ONE, 2017, 12 (6): e0178754.
doi: 10.1371/journal.pone.0178754 |
|
Dong Y, Du S S, Zhang J, et al. Differential expression of dual Bt genes in transgene poplar Juba (Populus deltoides cv. 'Juba') transformed by two different transformation vectors. Canadian Journal of Forest Research, 2015, 45 (1): 60- 67.
doi: 10.1139/cjfr-2014-0335 |
|
Eberl F, Fabisch T, Luck K, et al. Poplar protease inhibitor expression differs in an herbivore specific manner. BMC Plant Biology, 2021, 21 (1): 170.
doi: 10.1186/s12870-021-02936-4 |
|
Eberl F, Hammerbacher A, Gershenzon J, et al. Leaf rust infection reduces herbivore-induced volatile emission in black poplar and attracts a generalist herbivore. New Phytologist, 2018, 220 (3): 760- 772.
doi: 10.1111/nph.14565 |
|
Escobar-Bravo R, Alba J M, Pons C, et al. A jasmonate-inducible defense trait transferred from wild into cultivated tomato establishes increased whitefly resistance and reduced viral disease incidence. Frontiers in Plant Science, 2016, 7, 1732. | |
Fabisch T, Gershenzon J, Unsicker S B. Specificity of herbivore defense responses in a woody plant, black poplar (Populus nigra). Journal of Chemical Ecology, 2019, 45 (2): 162- 177.
doi: 10.1007/s10886-019-01050-y |
|
Fan D, Ran L Y, Hu J, et al. miR319a/TCP module and DELLA protein regulate trichome initiation synergistically and improve insect defenses in Populus tomentosa. New Phytologist, 2020, 227 (3): 867- 883.
doi: 10.1111/nph.16585 |
|
Fellenberg C, Corea O, Yan L H, et al. Discovery of salicyl benzoate UDP-glycosyltransferase, a central enzyme in poplar salicinoid phenolic glycoside biosynthesis. Plant Journal, 2020, 102 (1): 99- 115.
doi: 10.1111/tpj.14615 |
|
Fladung M, Hoenicka H, Raj Ahuja M. Genomic stability and long-term transgene expression in poplar. Transgenic Research, 2013, 22 (6): 1167- 1178.
doi: 10.1007/s11248-013-9719-2 |
|
Gaur R K, de Abreu I N, Albrectsen B R. Compensatory phenolic induction dynamics in aspen after aphid infestation. Scientific Reports, 2022, 12 (1): 9582.
doi: 10.1038/s41598-022-13225-x |
|
Gordon H, Fellenberg C, Lackus N D, et al. CRISPR/Cas9 disruption of UGT71L1 in poplar connects salicinoid and salicylic acid metabolism and alters growth and morphology. Plant Cell, 2022, 34 (8): 2925- 2947.
doi: 10.1093/plcell/koac135 |
|
Han G L, Li Y X, Yang Z R, et al. Molecular mechanisms of plant trichome development. Frontiers in Plant Science, 2022, 13, 910228.
doi: 10.3389/fpls.2022.910228 |
|
Hoffman N E. 2021. Revisions to USDA biotechnology regulations: the SECURE rule. Proceedings of the National Academy of Sciences of the United States of America, 118(22): e2004841118. | |
Hu J J, Zhang J, Chen X L, et al. An empirical assessment of transgene flow from a Bt transgenic poplar plantation. PLoS ONE, 2017, 12 (1): e0170201.
doi: 10.1371/journal.pone.0170201 |
|
Huang Y L, Zhen Z X, Zhe C, et al. Growth and arthropod community characteristics of transgenic poplar 741 in an experimental forest. Industrial Crops and Products, 2021, 162 (4): 113284. | |
Irmisch S, McCormick A C, Günther J, et al. Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar. Plant Journal, 2014, 80 (6): 1095- 1107.
doi: 10.1111/tpj.12711 |
|
Irmisch S, McCormick A C, Boeckler G A, et al. Two herbivore-induced cytochrome P450 enzymes CYP79D6 and CYP79D7 catalyze the formation of volatile aldoximes involved in poplar defense. Plant Cell, 2013a, 25 (11): 4737- 4754.
doi: 10.1105/tpc.113.118265 |
|
Irmisch S, Unsicker S B, Gershenzon J, et al. Identification and characterization of CYP79D6v4, a cytochrome P450 enzyme producing aldoximes in black poplar (Populus nigra). Plant Signaling & Behavior, 2013b, 8 (12): e27640.
doi: 10.4161/psb.27640 |
|
Kulasekaran S, Cerezo-Medina S, Harflett C, et al. A willow UDP-glycosyltransferase involved in salicinoid biosynthesis. Journal of Experimental Botany, 2021, 72 (5): 1634- 1648.
doi: 10.1093/jxb/eraa562 |
|
Lenz P R N, Nadeau S, Mottet M J, et al. Multi-trait genomic selection for weevil resistance, growth, and wood quality in Norway spruce. Evolutionary Applications, 2020, 13 (1): 76- 94.
doi: 10.1111/eva.12823 |
|
Li J X, Wang X X, Jiang R, et al. Phytohormone-based regulation of trichome development. Frontiers in Plant Science, 2021, 12, 734776.
doi: 10.3389/fpls.2021.734776 |
|
Lu L, Zhang Y, He Q Z H, et al. MTA, an RNA m6A methyltransferase, enhances drought tolerance by regulating the development of trichomes and roots in poplar. International Journal of Molecular Sciences, 2020, 21 (7): E2462.
doi: 10.3390/ijms21072462 |
|
Major I T, Constabel C P 2008. Functional analysis of the Kunitz trypsin inhibitor family in poplar reveals biochemical diversity and multiplicity in defense against herbivores. Plant Physiology, 146(3): 888–903. | |
McCormick A C, Boeckler G A, Köllner T G, et al. The timing of herbivore-induced volatile emission in black poplar (Populus nigra) and the influence of herbivore age and identity affect the value of individual volatiles as cues for herbivore enemies. BMC Plant Biology, 2014, 14, 304.
doi: 10.1186/s12870-014-0304-5 |
|
McCormick A C, Unsicker S B, Gershenzon J. The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends in Plant Science, 2012, 17 (5): 303- 310.
doi: 10.1016/j.tplants.2012.03.012 |
|
McKenna D D, Scully E D, Pauchet Y, et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biology, 2016, 17 (1): 227.
doi: 10.1186/s13059-016-1088-8 |
|
Meshkova V, Zhupinska K, Borysenko O, et al. Possible factors of poplar susceptibility to large poplar borer infestation. Forests, 2024, 15 (5): 882.
doi: 10.3390/f15050882 |
|
Mhoswa L, O’Neill M M, Mphahlele M M, et al. A genome-wide association study for resistance to the insect pest Leptocybe invasa in Eucalyptus grandis reveals genomic regions and positional candidate defense genes. Plant and Cell Physiology, 2020, 61 (7): 1285- 1296.
doi: 10.1093/pcp/pcaa057 |
|
Mithöfer A, Boland W. Plant defense against herbivores: chemical aspects. Annual Review of Plant Biology, 2012, 63, 431- 450.
doi: 10.1146/annurev-arplant-042110-103854 |
|
Müller N A, Kersten B, Fladung M, et al. RNA-seq of eight different poplar clones reveals conserved up-regulation of gene expression in response to insect herbivory. BMC Genomics, 2019, 20 (1): 673.
doi: 10.1186/s12864-019-6048-8 |
|
Nvsvrot T, Xia W X, Xiao Z A, et al. Combining QTL mapping with genome resequencing identifies an indel in an R gene that is associated with variation in leaf rust disease resistance in poplar. Phytopathology, 2020, 110 (4): 900- 906.
doi: 10.1094/PHYTO-10-19-0402-R |
|
Okumura S, Sawada M, Park Y W, et al. Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Research, 2006, 15 (5): 637- 646.
doi: 10.1007/s11248-006-9009-3 |
|
Philippe R N, Ralph S G, Külheim C, et al. Poplar defense against insects: genome analysis, full-length cDNA cloning, and transcriptome and protein analysis of the poplar Kunitz-type protease inhibitor family. New Phytologist, 2009, 184 (4): 865- 884.
doi: 10.1111/j.1469-8137.2009.03028.x |
|
Plett J M, Wilkins O, Campbell M M, et al. Endogenous overexpression of Populus MYB186 increases trichome density, improves insect pest resistance, and impacts plant growth. Plant Journal, 2010, 64 (3): 419- 432.
doi: 10.1111/j.1365-313X.2010.04343.x |
|
Qi T C, Song S S, Ren Q C, et al. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell, 2011, 23 (5): 1795- 1814.
doi: 10.1105/tpc.111.083261 |
|
Ren Y C, Huang Y L, Zhang J, et al. Application of polygene polymerization for insect-resistant poplar breeding. Forestry Research, 2022, 2, 3. | |
Ren Y C, Zhou X L, Dong Y, et al. Exogenous gene expression and insect resistance in dual Bt toxin Populus × euramericana 'Neva' transgenic plants. Frontiers in Plant Science, 2021, 12, 660226.
doi: 10.3389/fpls.2021.660226 |
|
Rieger M A, Lamond M, Preston C, et al. Pollen-mediated movement of herbicide resistance between commercial canola fields. Science, 2002, 296 (5577): 2386- 2388.
doi: 10.1126/science.1071682 |
|
Sepúlveda S L, Neale D B, Holliday J A, et al. GWAS on the attack by aspen borer Saperda calcarata on black cottonwood trees reveals a response mechanism involving secondary metabolism and independence of tree architecture. Forests, 2023, 14 (6): 1129.
doi: 10.3390/f14061129 |
|
Simon S J, Tschaplinski T J, LeBoldus J M, et al. Host plant genetic control of associated fungal and insect species in a Populus hybrid cross. Ecology and Evolution, 2020, 10 (11): 5119- 5134.
doi: 10.1002/ece3.6266 |
|
Tan W R, Han Q, Li Y, et al. A HAT1-DELLA signaling module regulates trichome initiation and leaf growth by achieving gibberellin homeostasis. New Phytologist, 2021, 231 (3): 1220- 1235.
doi: 10.1111/nph.17422 |
|
Unsicker S B, Gershenzon J, Köllner T G. Beetle feeding induces a different volatile emission pattern from black poplar foliage than caterpillar herbivory. Plant Signaling & Behavior, 2015, 10 (3): e987522.
doi: 10.4161/15592324.2014.987522 |
|
Wang G Y, Dong Y, Liu X J, et al. The current status and development of insect-resistant genetically engineered poplar in China. Frontiers in Plant Science, 2018, 9, 1408.
doi: 10.3389/fpls.2018.01408 |
|
Wang L J, Qu L J, Hu J J, et al. Metabolomics reveals constitutive metabolites that contribute resistance to fall webworm (Hyphantria cunea) in Populus deltoides. Environmental and Experimental Botany, 2017, 136 (4): 31- 40. | |
Wang S J, Liu J X, Dong Y, et al. Dynamic monitoring of the impact of insect-resistant transgenic poplar field stands on arthropod communities. Forest Ecology and Management, 2022, 505 (2): 11992. | |
Wang Y, Yang Y, Wang F, et al. Growth adaptability and foreign gene stability of TaLEA transgenic Populus simonii × nigra. Annals of Forest Science, 2021, 78, 42.
doi: 10.1007/s13595-021-01038-3 |
|
Wang Y B, Zhang W X, Ding C J, et al. Endophytic communities of transgenic poplar were determined by the environment and niche rather than by transgenic events. Frontiers in Microbiology, 2019, 10, 588.
doi: 10.3389/fmicb.2019.00588 |
|
Wei H, Xu C, Movahedi A, et al. Characterization and function of 3-hydroxy-3-methylglutaryl-CoA reductase in Populus trichocarpa: overexpression of PtHMGR enhances terpenoids in transgenic poplar. Frontiers in Plant Science, 2019, 10, 1476.
doi: 10.3389/fpls.2019.01476 |
|
Wu N N, Zhang S F, Li X W, et al. Fall webworm genomes yield insights into rapid adaptation of invasive species. Nature Ecology & Evolution, 2019a, 3 (1): 105- 115. | |
Wu Y Y, Xu L T, Chang L, et al. Bacillus thuringiensis cry1C expression from the plastid genome of poplar leads to high mortality of leaf-eating caterpillars. Tree Physiology, 2019b, 39 (9): 1525- 1532.
doi: 10.1093/treephys/tpz073 |
|
Xu C, Wei H, Wang L K, et al. Optimization of the cry1Ah1 sequence enhances the hyper-resistance of transgenic poplars to Hyphantria cunea. Frontiers in Plant Science, 2019, 10, 335.
doi: 10.3389/fpls.2019.00335 |
|
Xu S J, Zhang Y Q, Li S C, et al. Plastid-expressed Bacillus thuringiensis (Bt) cry3Bb confers high mortality to a leaf eating beetle in poplar. Plant Cell Reports, 2020, 39 (3): 317- 323.
doi: 10.1007/s00299-019-02492-0 |
|
Yang S D, Wang G, Niu M H, et al. Impacts of AlaAT3 transgenic poplar on rhizosphere soil chemical properties, enzyme activity, bacterial community, and metabolites under two nitrogen conditions. GM Crops & Food, 2024, 15 (1): 1- 15. | |
Yoshida Y, Sano R, Wada T, et al. Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in Arabidopsis. Development, 2009, 136 (6): 1039- 1048.
doi: 10.1242/dev.030585 |
|
Yu X Y, Lu B, Dong Y, et al. Cloning and functional identification of PeWRKY41 from Populus × euramericana. Industrial Crops and Products, 2022, 175 (1): 114279. | |
Yu X T, Pan Y, Dong Y, et al. Cloning and overexpression of PeWRKY31 from Populus × euramericana enhances salt and biological tolerance in transgenic Nicotiana. BMC Plant Biology, 2021, 21 (1): 80.
doi: 10.1186/s12870-021-02856-3 |
|
Zhang B Y, Chen M, Zhang X F, et al. Expression of Bt-Cry3A in transgenic Populus alba × P. glandulosa and its effects on target and non-target pests and the arthropod community. Transgenic Research, 2011, 20 (3): 523- 532.
doi: 10.1007/s11248-010-9434-1 |
|
Zhang Z J, Huang Y L, Dong Y, et al. Effect of T-DNA integration on growth of transgenic Populus × euramericana cv. Neva underlying field stands. International Journal of Molecular Sciences, 2023, 24 (16): 12952.
doi: 10.3390/ijms241612952 |
|
Zhou C, Zhang Q, Chen Y, et al. Balancing selection and wild gene pool contribute to resistance in global rice germplasm against planthopper. Journal of Integrative Plant Biology, 2021, 63 (10): 1695- 1711.
doi: 10.1111/jipb.13157 |
|
Zhou F W, Wu H T, Chen Y N, et al. 2023. Function and molecular mechanism of a poplar placenta limited MIXTA gene in regulating differentiation of plant epidermal cells. International Journal of Biological Macromolecules, 242(Pt 2): 124743. | |
Zhou H L, Wang X Y, Mo Y, et al. Genetic analysis and fine mapping of the gall midge resistance gene Gm5 in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2020a, 133 (6): 2021- 2033.
doi: 10.1007/s00122-020-03575-3 |
|
Zhou X L, Dong Y, Zhang Q, et al. Expression of multiple exogenous insect resistance and salt tolerance genes in Populus nigra L. Frontiers in Plant Science, 2020b, 11, 1123.
doi: 10.3389/fpls.2020.01123 |
|
Zhou X L, Ren Y C, Wang S J, et al. T-DNA integration and its effect on gene expression in dual Bt gene transgenic Populus x euramericana cv. Neva. Industrial Crops and Products, 2022, 178, 114636.
doi: 10.1016/j.indcrop.2022.114636 |
|
Zuo L H, Yang R L, Zhen Z X, et al. A 5-year field study showed no apparent effect of the Bt transgenic 741 poplar on the arthropod community and soil bacterial diversity. Scientific Reports, 2018, 8 (1): 1956.
doi: 10.1038/s41598-018-20322-3 |
[1] | 王天欣,牛晋鸿,曹明嵘,刘成功,李金花. 低氮下小黑杨×欧洲黑杨杂交子代苗期性状遗传变异和选择[J]. 林业科学, 2025, 61(2): 142-151. |
[2] | 杨玲玉,石文广,罗志斌. 外生菌根真菌卷边桩菇促进宿主灰杨氮吸收利用特征[J]. 林业科学, 2024, 60(9): 69-79. |
[3] | 邱啸林,王姝敏,余璐,杨宇辰,熊典广,田呈明. 杨树腐烂病菌SNARE蛋白CcNyv1的功能[J]. 林业科学, 2024, 60(9): 90-98. |
[4] | 王傲宇,郭有正,邓坦,刘洋,邸楠,段劼,李熙萌,席本野. 几种评价植物水分调节策略的方法对比——以毛白杨为例[J]. 林业科学, 2024, 60(8): 109-119. |
[5] | 徐磊,吴小云,律江,石云,朱梦洵,许行,张志强. 散射辐射比例对华北平原杨树人工林生态系统能量分配的影响[J]. 林业科学, 2024, 60(3): 100-110. |
[6] | 万家鸣,律江,石云,许行,张志强. 散射辐射对杨树人工林生态系统总初级生产力的影响[J]. 林业科学, 2023, 59(5): 1-10. |
[7] | 韩璐,赵涵,王薇,刘文辉,姜在民,蔡靖. 白杨杂交子代栓塞脆弱性分割及与生长的关系[J]. 林业科学, 2023, 59(3): 94-103. |
[8] | 王卫锋,赵瑜琦,高苗琴,宗毓铮,郝兴宇. 群众杨幼苗叶光合特性与碳氮分配对CO2浓度和气温升高的响应[J]. 林业科学, 2023, 59(2): 40-47. |
[9] | 赵蕊蕊,刘勇,王凯. 生物炭和有机肥对毛白杨人工林地木质分解及土壤养分循环相关酶活性的影响[J]. 林业科学, 2023, 59(11): 1-11. |
[10] | 王薇,赵涵,黄欣,侯卓梁,姜在民,蔡靖. 白杨无性系叶片水力及经济性状与生物量的关系[J]. 林业科学, 2023, 59(10): 89-98. |
[11] | 陈赢男,胡传景,诸葛强,胡建军,尹佟明. 杨树农杆菌遗传转化研究30年[J]. 林业科学, 2022, 58(12): 114-129. |
[12] | 张伟溪,王颜波,丁昌俊,朱文旭,苏晓华. 成龄转基因银中杨试验林外源基因水平转移及土壤微生物连年监测[J]. 林业科学, 2022, 58(1): 52-61. |
[13] | 唐芳,赵树堂,王丽娟,宋学勤,卢孟柱. 毛白杨次生维管系统再生过程的基因表达[J]. 林业科学, 2021, 57(9): 52-65. |
[14] | 李雪燕,熊典广,田呈明. 杨树腐烂病菌胞外分泌复合体亚基CcExo70的功能[J]. 林业科学, 2021, 57(8): 82-93. |
[15] | 陈越渠,刘庆珍,李立梅,张杨,韩姣,张永安. 杨树溃疡病拮抗链霉菌的筛选及鉴定[J]. 林业科学, 2021, 57(7): 92-100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||