林业科学 ›› 2024, Vol. 60 ›› Issue (12): 168-176.doi: 10.11707/j.1001-7488.LYKX20230474
收稿日期:
2023-10-08
出版日期:
2024-12-25
发布日期:
2025-01-02
通讯作者:
李湘洲
E-mail:zpzwjpsp@163.com
基金资助:
Peng Zhou1(),Xiangzhou Li1,2,3,*
Received:
2023-10-08
Online:
2024-12-25
Published:
2025-01-02
Contact:
Xiangzhou Li
E-mail:zpzwjpsp@163.com
摘要:
林源次生代谢物的开发与利用是发挥森林“钱库”作用的重要途径。枳实黄酮是一类天然的林源黄酮类化合物,因具有重要的生物活性而被广泛应用于食品、药品等领域。然而,当前枳实提取物产业仍存在资源利用率较低、枳实黄酮生物活性作用机制不明以及水溶性差、生物利用度低等瓶颈问题,严重制约产业的可持续发展。基于此,本文综述了枳实黄酮的提取方法,提出了强化质量传递过程与揭示提取机理的策略;评述了枳实黄酮的主要生物活性与作用机制;梳理了通过化学结构修饰或包埋技术进行改性增加其利用价值的途径。同时,对开展枳实黄酮的研究提出了建议:1)在提高枳实资源利用率方面可采用多种技术联合或多组分提取的方法实现枳实黄酮的高效提取,建立质量传递模型并结合表征技术揭示提取过程中的物质迁移规律;2) 在生物活性及作用机制研究方面可以通过实验与计算化学相结合的手段深入研究枳实黄酮的化学结构与生物活性之间的构效关系,揭示其生物活性作用的分子机制;3)在枳实黄酮的改性方面可融合计算化学手段精准设计改性策略并诠释改性机制。
中图分类号:
周鹏,李湘洲. 枳实黄酮提取、生物活性及其改性研究进展[J]. 林业科学, 2024, 60(12): 168-176.
Peng Zhou,Xiangzhou Li. Research Advances on Extraction, Bioactivity and Modification of Flavonoids from Citrus aurantium [J]. Scientia Silvae Sinicae, 2024, 60(12): 168-176.
陈 强, 朱贲峰, 贺肇东, 等. 绿衣枳实不同炮制品中柚皮苷含量比较. 中国医院药学杂志, 2008, 28 (20): 1800- 1801. | |
Chen Q, Zhu B F, He Z D, et al. Comparison of naringin content in different processed products of Fructus Aurantii Immaturus. Chinese Journal of Hospital Pharmacy, 2008, 28 (20): 1800- 1801. | |
陈 彦, 王晋艳, 贾晓斌, 等. 枳实中主要二氢黄酮类成分肠道吸收代谢及与药物相互作用的研究进展. 中草药, 2010, 41 (9): 1564- 1566. | |
Chen Y, Wang J Y, Jia X B, et al. Advances in studies on absorption, metabolism, and drug interaction of dihydroflavones in Aurantii Fructus Immaturus. Chinese Traditional and Herbal Drugs, 2010, 41 (9): 1564- 1566. | |
黄 睿, 沈淑妤, 陈虹霖, 等. 柑橘类黄酮的生物学活性及提高生物利用度技术研究进展. 食品科学, 2019, 40 (1): 319- 326. | |
Huang R, Shen S Y, Chen H L, et al. Recent advances in bioactivities and technologies for bioavailability improvement of Citrus flavonoids. Food Science, 2019, 40 (1): 319- 326. | |
贾富霞, 王秀娟, 罗 容. 酸橙枳实黄酮类抗氧化活性的药效组分研究. 世界中医药, 2021, 16 (15): 2261- 2265.
doi: 10.3969/j.issn.1673-7202.2021.15.009 |
|
Jia F X, Wang X J, Luo R. Study on antioxidative active components alignment of flavonoids from Aurantii Fructis Immaturus. World Chinese Medicine, 2021, 16 (15): 2261- 2265.
doi: 10.3969/j.issn.1673-7202.2021.15.009 |
|
李 杰, 吴艳芳, 王新胜, 等. 低共熔溶剂提取枳实中黄酮类成分的工艺研究. 应用化工, 2020, 49 (12): 3078- 3082. | |
Li J, Wu Y F, Wang X S, et al. Extraction of flavonoids from Fructus Aurantii Immaturus by deep eutectic solvent. Applied Chemical Industry, 2020, 49 (12): 3078- 3082. | |
梁曾恩妮, 李志坚, 单 杨. 2021. 枳实黄酮提取物对6-羟基多巴胺所致PC12细胞损伤的保护作用. 湖南农业科学, (02): 40-44. | |
Liang Z E N, Li Z J, Shan Y. 2021. Protective effect of immaturue bitter orange(Citrus aurantium L. ) flavonoids extracts on PC12 cell injury induced by 6-Hydroxydopamine. Agricultural Science and Technology, 22(03): 36-41. [in Chinese] | |
林倚莉, HU Ze-yuan, 谭人千, 等. 2020. 枳实对功能性消化不良大鼠IL-6、SCF、MTL的影响. 山西中医, 36(01): 52−53, 62. | |
Lin Y H, Hu Z Y, Tan R Q, et al. Effect of zhishi on Il-6, SCF and MTL in rats with functional dyspesia. Shanxi University of Traditional Chinese Medicine, 36(01): 52−53, 62. [in Chinese] | |
刘丹宁. 2020. 枳实黄酮的超声低共熔溶剂提取及其对化疗腹泻小鼠的影响. 重庆: 西南大学. | |
Liu D N. 2020. Flavonoids in Fructus Aurantii Immaturus: uitrasound-assisted deep eutectic solvent extraction and effects on 5-FU induce diarrhes mice. Chongqing: Southwest University [in Chinese] | |
覃 瑛, 李晓杰, 许键炜, 等. 橙皮素对仓鼠颈动脉粥样硬化和脂质代谢的作用机制. 贵州医科大学学报, 2020, 45 (07): 760- 766,772. | |
Qin Y, Li X J, Xu, J W, et al. Effect of hesperetin on hamster carotid atherosclerosis and lipid metabolism. Journal of Guizhou Medical University, 2020, 45 (07): 760- 766,772. | |
曲中原, 冯晓敏, 邹 翔, 等. 枳实研究进展. 食品与药品, 2017, 19 (6): 455- 459. | |
Qu Z Y, Feng X M, Zou X, et al. Research progress in Aurantii Fructus Immaturus. Food and Drug, 2017, 19 (6): 455- 459. | |
任 明, 刘建民, 孙 荣, 等. 酶法提取枳实中橙皮苷工艺研究. 食品与药品, 2019, 21 (3): 206- 209. | |
Ren M, Liu J M, Sun R, et al. Research on enzymatic extraction process of hesperidin from Aurantii Fructus Immaturus. Food and Drug, 2019, 21 (3): 206- 209. | |
尚 曼, 张文亮, 黄 军, 等. 甲基橙皮苷的研究进展. 煤炭与化工, 2019, 42 (7): 121- 123,149. | |
Shang M, Zhang W L, Huang J, et al. Research progress of methyl hesperidin. Coal and Chemical Industry, 2019, 42 (7): 121- 123,149. | |
王 淳, 刘振丽, 宋志前, 等. 中药枳实提取工艺研究. 中国实验方剂学杂志, 2008, (09): 27- 29. | |
Wang C, Liu Z L, Song Z Q, et al. Study on the extracting technology of Fructus Aurantii Immaturus. Chinese Journal of Experimental Traditional Medical Formulae, 2008, (09): 27- 29. | |
王 婷, 孙静莹, 刘 翠, 等. 麸炒枳实对功能性消化不良大鼠肠道菌群的影响. 中国药学杂志, 2021, 56 (13): 1068- 1075.
doi: 10.11669/cpj.2021.13.008 |
|
Wang T, Sun J Y, Liu C, et al. Effects of fried Fructus Aurantii Immaturus with wheat bran decoction on intestinal flora in rats with functional dyspepsia. Chinese Pharmaceutical Journal, 2021, 56 (13): 1068- 1075.
doi: 10.11669/cpj.2021.13.008 |
|
谢贞建, 焦士蓉, 唐鹏程. 枳实类黄酮体外抗氧化作用研究. 林产化学与工业, 2009, 29 (4): 33- 36.
doi: 10.3321/j.issn:0253-2417.2009.04.007 |
|
Xie Z J, Jiao S R, Tang P C. Antioxidation in vitro of Flavonoids from Frutus aurantii immatures. Chemistry and Industry of Forest Products, 2009, 29 (4): 33- 36.
doi: 10.3321/j.issn:0253-2417.2009.04.007 |
|
杨 丹, 杨放晴, 燕娜娜, 等. 黑曲霉发酵对陈皮黄酮类成分及抗氧化活性的影响. 食品科技, 2019, 44 (12): 23- 27. | |
Yang D, Yang F Q, Yan N N, et al. Effects of Aspergillus niger fermentation on flavonoids and antioxidant activity of pericarpium citri reticulatae(PCR). Food Science and Technology, 2019, 44 (12): 23- 27. | |
杨玉环, 张灵煜, 郭秋平, 等. 枳实、枳壳的生物活性成分及其应用研究进展. 食品与药品, 2021, 23 (5): 476- 484. | |
Yang Y H, Zhang L Y, Guo Q P, et al. Bioactive components of Fructus Aurantii Immaturus and Fructus Aurantii and their application. Food and Drug, 2021, 23 (5): 476- 484. | |
张风亭, 胡 坦, 潘思轶. 橙皮苷生物学活性及其改性技术的研究进展. 食品工业科技, 2022, 43 (10): 442- 449. | |
Zhang F T, Hu T, Pan S Y. Resecrch progress on biological activity and modification technology of hesperidin. Science and Technology of Food Industry, 2022, 43 (10): 442- 449. | |
张 红, 孙明江, 王 凌. 枳实的化学成分及药理作用研究进展. 中药材, 2009, 32 (11): 1787- 1790. | |
Zhang H, Sun M J, Wang L. Research progress on chemical constituents and pharmacological effects of Fructus Aurantii Immaturus. Journal of Chinese Medicinal Materials, 2009, 32 (11): 1787- 1790. | |
张菊华, 杨荣文, 刘 伟, 等. 枳实中橙皮苷与辛弗林的工业化联产工艺研究. 食品与机械, 2016, 32 (11): 169- 173. | |
Zhang J H, Yang R W, Liu W, et al. Study on industrial cogeneration technology of hesperidin and synephrine in Fructus Aurantii Immaturus. Food & Machinery, 2016, 32 (11): 169- 173. | |
张晓南, 黄世敬. 枳实、枳壳的抗抑郁作用. 环球中医药, 2014, 7 (1): 77- 80. | |
Zhang X N, Huang S J. Antidepressant effects of Aurantii Fructus Immaturus/Aurantii Fructus. Global Traditional Chinese Medicine, 2014, 7 (1): 77- 80. | |
张霄潇, 李正勇, 马玉玲, 等. 中药枳实的研究进展. 中国中药杂志, 2015, 40 (2): 185- 190. | |
Zhang X X, Li Z Y, Ma Y L, et al. Progress in research of traditional Chinese medicine Citrus aurantium. China Journal of Chinese Materia Medica, 2015, 40 (2): 185- 190. | |
郑玉莹, 庞文静, 白 杨, 等. 基于UFLC-Triple TOF-MS/MS技术的枳实传统饮片及破壁饮片化学成分系统分析. 中南药学, 2018, 16 (4): 443- 450. | |
Zheng Y Y, Pang W J, Bai Y, et al. Chemical constituents in traditional slices and ultrafine granular powder of Fructus Aurantii Immaturus by UFLC-Triple TOF-MS/MS. Central South Pharmacy, 2018, 16 (4): 443- 450. | |
朱泰霖, 王慧心, 陈杰标, 等. 不同品种柑橘果实的类黄酮分离纯化及其抗氧化活性研究. 浙江大学学报(农业与生命科学版), 2021, 47 (6): 704- 718. | |
Zhu T L, Wang H X, Chen J B, et al. Separation and purification of flavonoids from different Citrus fruits and their antioxidant activities. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47 (6): 704- 718. | |
Al-Rikabi R, Al-Shmgani H, Dewir Y H, et al. In vivo and in vitro evaluation of the protective effects of hesperidin in lipopolysaccharide-induced inflammation and cytotoxicity of cell. Molecules, 2020, 25 (3): 478.
doi: 10.3390/molecules25030478 |
|
Barreca D, Bellocco E, Caristi C, et al. Distribution of C- and O-glycosyl flavonoids, (3-hydroxy-3-methylglutaryl)glycosyl flavanones and furocoumarins in Citrus aurantium L. juice. Food Chemistry, 2011, 124 (2): 576- 582.
doi: 10.1016/j.foodchem.2010.06.076 |
|
Celano M, Maggisano V, De Rose R F, et al. Flavonoid fraction of Citrus reticulata juice reduces proliferation and migration of anaplastic thyroid carcinoma cells. Nutrition and Cancer, 2015, 67 (7): 1183- 1190.
doi: 10.1080/01635581.2015.1073760 |
|
Deng W, Jiang D, Fang Y, et al. Hesperetin protects against cardiac remodelling induced by pressure overload in mice. Journal of Molecular Histology, 2013, 44 (5): 575- 585.
doi: 10.1007/s10735-013-9514-7 |
|
Feng S, Suh J H, Gmitter F G, et al. Differentiation between flavors of sweet orange (Citrus sinensis) and mandarin (Citrus reticulata). Journal of Agricultural and Food Chemistry, 2018, 66 (1): 203- 211.
doi: 10.1021/acs.jafc.7b04968 |
|
Grohmann K, Manthey J A, Cameron R G. Acid-catalyzed hydrolysis of hesperidin at elevated temperatures. Carbohydrate Research, 2000, 328 (2): 141- 146.
doi: 10.1016/S0008-6215(00)00081-1 |
|
Guo C, Shan Y X, Yang Z Q, et al. Chemical composition, antioxidant, antibacterial, and tyrosinase inhibition activity of extracts from Newhall navel orange (Citrus sinensis Osbeck cv. Newhall) peel. Journal of the Science of Food and Agriculture, 2020, 100 (6): 2664- 2674.
doi: 10.1002/jsfa.10297 |
|
Hwang H J, Kim H J, Ko M J, et al. Recovery of hesperidin and narirutin from waste Citrus unshiu peel using subcritical water extraction aided by pulsed electric field treatment. Food Science and Biotechnology, 2021, 30 (2): 217- 226.
doi: 10.1007/s10068-020-00862-z |
|
Ji X L, Peng Q, Yuan Y P, et al. Extraction and physicochemical properties of polysaccharides from Ziziphus Jujuba cv. Muzao by ultrasound-assisted aqueous two-phase extraction. International Journal of Biological Macromolecules, 2018, 108, 541- 549.
doi: 10.1016/j.ijbiomac.2017.12.042 |
|
Jiang T, Ghosh R, Charcosset C. Extraction, purification and applications of curcumin from plant materials-a comprehensive review. Trends in Food Science & Technology, 2021, 112, 419- 430. | |
Karabıyıklı Ş, Değirmenci H, Karapınar M. Inhibitory effect of sour orange (Citrus aurantium) juice on Salmonella Typhimurium and Listeria monocytogenes. LWT - Food Science and Technology, 2014, 55 (2): 421- 425.
doi: 10.1016/j.lwt.2013.10.037 |
|
Kim G S, Park H J, Woo J H, et al. Citrus aurantium flavonoids inhibit adipogenesis through the Akt signaling pathway in 3T3-L1 cells. BMC Complementary and Alternative Medicine, 2012a, 12 (1): 31.
doi: 10.1186/1472-6882-12-31 |
|
Kim J A, Park H S, Kang S R, et al. Suppressive effect of flavonoids from Korean Citrus aurantium L. on the expression of inflammatory mediators in L6 skeletal muscle cells. Phytotherapy Research, 2012b, 26 (12): 1904- 1912.
doi: 10.1002/ptr.4666 |
|
Lachos-Perez D, Baseggio A M, Mayanga-Torres P C, et al. Subcritical water extraction of flavanones from defatted orange peel. The Journal of Supercritical Fluids, 2018, 138, 7- 16.
doi: 10.1016/j.supflu.2018.03.015 |
|
Lee H J, Lee S, Lee D, et al. Ameliorating effect of Citrus aurantium extracts and nobiletin on β-amyloid (1-42)-induced memory impairment in mice. Molecular Medicine Reports, 2019, 20 (4): 3448- 3455. | |
Li P, Zeng S L, Duan L, et al. Comparison of Aurantii Fructus Immaturus and Aurantii Fructus based on multiple chromatographic analysis and chemometrics methods. Journal of Chromatography A, 2016, 1469, 96- 107.
doi: 10.1016/j.chroma.2016.09.061 |
|
Liao Y M, Zhong L, Liu L N, et al. Comparison of surfactants at solubilizing, forming and stabilizing nanoemulsion of hesperidin. Journal of Food Engineering, 2020, 281, 110000.
doi: 10.1016/j.jfoodeng.2020.110000 |
|
Lu B Y, Wang X, Ren Z J, et al. Anti-glaucoma potential of hesperidin in experimental glaucoma induced rats. AMB Express, 2020, 10 (1): 94.
doi: 10.1186/s13568-020-01027-1 |
|
Multari S, Licciardello C, Caruso M, et al. Flavedo and albedo of five Citrus fruits from Southern Italy: physicochemical characteristics and enzyme-assisted extraction of phenolic compounds. Journal of Food Measurement and Characterization, 2021, 15 (2): 1754- 1762.
doi: 10.1007/s11694-020-00787-5 |
|
Omidfar F, Gheybi F, Davoodi J, et al. Nanophytosomes of hesperidin and of hesperetin: Preparation, characterization, and in vivo evaluation. Biotechnology and Applied Biochemistry, 2023, 70 (2): 846- 856.
doi: 10.1002/bab.2404 |
|
Parhiz H, Roohbakhsh A, Soltani F, et al. Antioxidant and anti-inflammatory properties of the Citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytotherapy Research, 2015, 29 (3): 323- 331.
doi: 10.1002/ptr.5256 |
|
Park K I, Park H S, Nagappan A, et al. Induction of the cell cycle arrest and apoptosis by flavonoids isolated from Korean Citrus aurantium L. in non-small-cell lung cancer cells. Food Chemistry, 2012, 135 (4): 2728- 2735.
doi: 10.1016/j.foodchem.2012.06.097 |
|
Shen C Y, Lin J J, Jiang J G, et al. Potential roles of dietary flavonoids from Citrus aurantium L. var. Amara Engl. in atherosclerosis development. Food & Function, 2020, 11 (1): 561- 571. | |
Singanusong R, Nipornram S, Tochampa W, et al. Low power Ultrasound-assisted extraction of phenolic compounds from mandarin (Citrus reticulata blanco cv. sainampueng) and lime (Citrus aurantifolia) peels and the antioxidant. Food Analytical Methods, 2015, 8 (5): 1112- 1123.
doi: 10.1007/s12161-014-9992-6 |
|
Tian M, Han Y B, Zhao C C, et al. Hesperidin alleviates insulin resistance by improving HG-induced oxidative stress and mitochondrial dysfunction by restoring miR-149. Diabetology & Metabolic Syndrome, 2021, 13 (1): 50. | |
Ting Y W, Chiou Y S, Pan M H, et al. In vitro and in vivo anti-cancer activity of tangeretin against colorectal cancer was enhanced by emulsion-based delivery system. Journal of Functional Foods, 2015, 15, 264- 273.
doi: 10.1016/j.jff.2015.03.034 |
|
Todd R, Baroutian S. A techno-economic comparison of subcritical water, supercritical CO2 and organic solvent extraction of bioactives from grape Marc. Journal of Cleaner Production, 2017, 158, 349- 358.
doi: 10.1016/j.jclepro.2017.05.043 |
|
Tripoli E, La Guardia M, Giammanco S, et al. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: a review. Food Chemistry, 2007, 104 (2): 466- 479.
doi: 10.1016/j.foodchem.2006.11.054 |
|
Wang C Q, Xia N, Yu M, et al. Physicochemical properties and mechanism of solubilised neohesperidin system based on inclusion complex of hydroxypropyl-β-cyclodextrin. International Journal of Food Science & Technology, 2023, 58 (1): 107- 115. | |
Wang J, Li Q Q, Chen Z K, et al. Improved bioavailability and anticancer efficacy of Hesperetin on breast cancer via a self-assembled rebaudioside A nanomicelles system. Toxicology and Applied Pharmacology, 2021, 419, 115511.
doi: 10.1016/j.taap.2021.115511 |
|
Wang X H, Hasegawa J, Kitamura Y, et al. Effects of hesperidin on the progression of hypercholesterolemia and fatty liver induced by high-cholesterol diet in rats. Journal of Pharmacological Sciences, 2011, 117 (3): 129- 138.
doi: 10.1254/jphs.11097FP |
|
Wolfram J, Scott B, Boom K, et al. Hesperetin liposomes for cancer therapy. Current Drug Delivery, 2016, 13 (5): 711- 9.
doi: 10.2174/1567201812666151027142412 |
|
Wu J Z, Huang G R, Li Y J, et al. Flavonoids from Aurantii Fructus Immaturus and Aurantii Fructus: promising phytomedicines for the treatment of liver diseases. Chinese Medicine, 2020, 15 (1): 89.
doi: 10.1186/s13020-020-00371-5 |
|
Xu Y Y, Qiu Y, Ren H, et al. Optimization of ultrasound-assisted aqueous two-phase system extraction of polyphenolic compounds from Aronia melanocarpa pomace by response surface methodology. Preparative Biochemistry & Biotechnology, 2017, 47 (3): 312- 321. | |
Yan Y, Zhou H, Wu C H, et al. Ultrasound-assisted aqueous two-phase extraction of synephrine, naringin, and neohesperidin from Citrus aurantium L. fruitlets. Preparative Biochemistry & Biotechnology, 2021, 51 (8): 780- 791. | |
Yang L J, Xia S, Ma S X, et al. Host–guest system of hesperetin and β-cyclodextrin or its derivatives: Preparation, characterization, inclusion mode, solubilization and stability. Materials Science and Engineering: C, 2016, 59, 1016- 1024.
doi: 10.1016/j.msec.2015.10.037 |
|
Yuan J B, Wei F T, Luo X Z, et al. Multi-component comparative pharmacokinetics in rats after oral administration of Fructus aurantii extract, naringin, neohesperidin, and naringin-neohesperidin. Frontiers in Pharmacology, 2020, 11, 933.
doi: 10.3389/fphar.2020.00933 |
|
Zhang Y H, Ru Y, Jiang C, et al. Naringinase-catalyzed hydrolysis of naringin adsorbed on macroporous resin. Process Biochemistry, 2020, 93, 48- 54.
doi: 10.1016/j.procbio.2020.03.014 |
|
Zhou P, Li X Z, Lu Y, et al. A novel approach and mechanistic insight into the co-extraction of essential oil and pectin from Citrus aurantium L. var. Amara Engl. based on machine learning and DFT calculations. Sustainable Chemistry and Pharmacy, 2024a, 39, 101570.
doi: 10.1016/j.scp.2024.101570 |
|
Zhou P, Li X Z, Jiang Z, et al. Facile construction of pectin-based hesperidin microcapsules: Solubilization, stability, loading process, and release mechanism. Food Chemistry, 2024b, 451, 139505.
doi: 10.1016/j.foodchem.2024.139505 |
|
Zhou P, Li X Z, Zhou J, et al. Mass transfer mechanism of the multivariate consecutive extraction process of pectin and hesperidin from Citrus aurantium L. : Kinetics, thermodynamics, diffusion and mass transfer coefficients. Separation and Purification Technology, 2023a, 311, 123339.
doi: 10.1016/j.seppur.2023.123339 |
|
Zhou P, Li X Z, Zhou J, et al. A green approach for multivariate consecutive extraction of essential oils and flavonoids from Citrus aurantium L. var. Amara Engl. : Process optimization and mechanistic insights based on machine learning methods. Industrial Crops and Products, 2023b, 206, 117611.
doi: 10.1016/j.indcrop.2023.117611 |
|
Zhou P, Zheng M, Li X Z, et al. A consecutive extraction of pectin and hesperidin from Citrus aurantium L. : Process optimization, extract mechanism, characterization and bio-activity analysis. Industrial Crops and Products, 2022, 182, 114849.
doi: 10.1016/j.indcrop.2022.114849 |
[1] | 陈媛,吴德淮,晏婷婷,赵莹,刘宝元,李改云. 沉香多级提取物的化学成分及释香行为[J]. 林业科学, 2024, 60(7): 129-139. |
[2] | 焦立超, 陆杨, 郭雨, 殷亚方. 木材分子考古研究进展[J]. 林业科学, 2024, 60(2): 118-127. |
[3] | 张凡,仇天昊,李欣悦,张姝茵,徐超,谢治国. 基于改进像元三分模型的植被覆盖度提取及时空变化分析[J]. 林业科学, 2024, 60(12): 13-26. |
[4] | 潘玺,李康,杨忠. 基于卷积神经网络的近红外光谱与数字图像特征信息融合木材树种识别[J]. 林业科学, 2024, 60(12): 136-145. |
[5] | 刘美宏,闫琦铭,訾龙博,雷亚芳,闫丽. 糠醇-环氧植物油复合改性毛白杨木材的物理力学性能[J]. 林业科学, 2024, 60(11): 149-159. |
[6] | 田智康,葛浙东,郑焕祺,郑志帅,周玉成. 基于深度学习的75种阔叶材微观辨识方法[J]. 林业科学, 2024, 60(10): 94-103. |
[7] | 徐晓俞,李程勋,李爱萍. 木豆种子和荚的化学成分及其抗氧化、抗炎活性[J]. 林业科学, 2023, 59(2): 67-74. |
[8] | 刘高峰,周再知,赵威威,张青青,黄桂华. 外源CO2诱导土沉香树体结香效应及生理响应[J]. 林业科学, 2023, 59(11): 95-102. |
[9] | 战鑫,庄敏,李国华,尹淑艳. 7种非悬铃木方翅网蝽寄主植物叶片粗提物对其成虫的生物活性[J]. 林业科学, 2022, 58(7): 156-162. |
[10] | 王嘉,梁晓洁,高暝,吴立文,赵耘霄,汪阳东,黄世清,张永志,傅火勇,陈益存. 千年桐根部黄酮类化合物生物合成对枯萎病菌侵染的响应[J]. 林业科学, 2022, 58(2): 159-170. |
[11] | 黄洪宇,骆钰波,唐丽玉,李肖肖,彭巍,陈崇成. 基于单木位置特征的多源树木三维点云配准方法[J]. 林业科学, 2022, 58(11): 96-107. |
[12] | 周小成,郑磊,黄洪宇. 基于多特征优选的无人机可见光遥感林分类型分类[J]. 林业科学, 2021, 57(6): 24-36. |
[13] | 屈阳,郭芹,李甜,赵紫芸,岳海涛,杨洁,王强. 高温花生粕蛋白基胶黏剂的制备与表征[J]. 林业科学, 2021, 57(6): 144-149. |
[14] | 平立娟,柴宇博,刘君良,孙柏玲. 硅溶胶与GU/GMU树脂复合改性橡胶木的性能[J]. 林业科学, 2021, 57(10): 111-119. |
[15] | 霍朗宁,张晓丽. 基于机载LiDAR点云多层聚类的单木信息提取及其精度评价[J]. 林业科学, 2021, 57(1): 85-94. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||