林业科学 ›› 2024, Vol. 60 ›› Issue (12): 136-145.doi: 10.11707/j.1001-7488.LYKX20230357
潘玺,李康,杨忠*
收稿日期:
2023-08-13
出版日期:
2024-12-25
发布日期:
2025-01-02
通讯作者:
杨忠
基金资助:
Xi Pan,Kang Li,Zhong Yang*
Received:
2023-08-13
Online:
2024-12-25
Published:
2025-01-02
Contact:
Zhong Yang
摘要:
目的: 基于卷积神经网络自动提取,探究融合木材近红外光谱与数字图像特征信息准确识别木材树种的可行性。方法: 以樟科10种木材标本为例,使用手持式近红外光谱仪和便携式扫描仪采集木材标本横切面近红外光谱和图像。创新引入递归图方法,将手持式近红外光谱仪采集的一维短波长近红外光谱转换为二维图像,促进卷积神经网络从近红外光谱数据中提取判别性更强的特征,实现近红外光谱与图像在二维尺度上的融合。构建结构简单的双分支卷积神经网络模型,自动提取、融合近红外光谱与图像特征识别木材树种。结果: 与直接使用一维近红外光谱的建模方法相比,近红外光谱递归图结合卷积神经网络模型的识别性能提升1.79%~14%;与使用近红外光谱或图像单一特征识别相比,双分支卷积神经网络模型自动提取、融合近红外光谱与图像特征,对10种木材的识别性能至少提高3%,模型准确率、精度和召回率均大于99%。结论: 一维短波长近红外光谱递归图转换能够促进卷积神经网络从近红外光谱数据中提取判别性更强的特征,提高模型识别性能。双分支卷积神经网络能够充分提取并有效融合木材近红外光谱与图像特征,一定程度上可克服使用单一特征识别木材树种的不足,提高木材树种识别效果。
中图分类号:
潘玺,李康,杨忠. 基于卷积神经网络的近红外光谱与数字图像特征信息融合木材树种识别[J]. 林业科学, 2024, 60(12): 136-145.
Xi Pan,Kang Li,Zhong Yang. Wood Species Identification through Fusion of NIR Spectroscopy and Digital Image Features Information Using Convolutional Neural Networks[J]. Scientia Silvae Sinicae, 2024, 60(12): 136-145.
表3
近红外光谱预处理对递归图识别10种木材的影响"
预处理 Pre-processing | NIR-B-CNN-1D | NIR-B-CNN | |||||
准确率 Accuracy | 精度 Precision | 召回率 Recall | 准确率 Accuracy | 精度 Precision | 召回率 Recall | ||
原始近红外光谱 Raw near infrared spectroscopy | 89.46 | 87.52 | 87.83 | 95.54 | 95.82 | 95.51 | |
去趋势Detrend | 93.88 | 94.13 | 93.87 | 96.00 | 96.12 | 95.99 | |
一阶导数First derivative (1st-D) | 95.13 | 94.82 | 95.15 | 96.58 | 96.75 | 96.58 | |
均值中心化Mean center (MC) | 92.21 | 92.95 | 92.07 | 94.50 | 95.08 | 94.43 | |
标准变量变换 Standard normal variate (SNV) | 90.38 | 91.05 | 90.37 | 95.88 | 96.12 | 95.86 | |
多元散射校正 Multiplicative scatter correction (MSC) | 91.08 | 91.77 | 91.13 | 95.33 | 95.66 | 95.28 |
表4
不同卷积神经网络模型结合图像识别10种木材的性能"
模型 Model | 图像尺寸 Image size | 准确率 Accuracy | 精度 Precision | 召回率 Recall |
Image-B-CNN | 125 pix×125 pix | 95.67 | 96.09 | 95.69 |
VGG19 | 93.79 | 94.02 | 93.73 | |
ResNe-t50 | 96.42 | 96.66 | 96.32 | |
Inception V3 | 95.04 | 95.34 | 94.91 | |
Xception | 95.96 | 96.18 | 95.89 | |
Image-B-CNN | 250 pix×250 pix | 96.75 | 96.87 | 96.75 |
VGG19 | 95.04 | 95.29 | 94.95 | |
ResNet-50 | 96.54 | 96.84 | 96.50 | |
Inception V3 | 96.50 | 96.70 | 96.46 | |
Xception | 96.46 | 96.71 | 96.42 |
表5
TB-CNN模型结合原始近红外光谱与图像识别10种木材的性能"
模型 Model | 输入数据(尺寸) Input date (size) | 准确率 Accuracy | 精度 Precision | 召回率 Recall |
NIR-B-CNN | NIR RP | 95.54 | 95.82 | 95.51 |
Image-B-CNN | Image (125 pix×125 pix) | 95.67 | 96.09 | 95.69 |
Image (250 pix×250 pix) | 96.75 | 96.87 | 96.75 | |
TB-CNN | NIR RP + Image (125 pix×125 pix) | 99.92 | 99.92 | 99.92 |
NIR RP + Image (250 pix×250 pix) | 99.96 | 99.96 | 99.96 |
表6
近红外光谱预处理对TB-CNN模型识别10种木材的影响"
预处理 Pre-processing | TB-CNN | ||||||
NIR RP + Image (125 pix×125 pix) | NIR RP + Image (250 pix×250 pix) | ||||||
准确率 Accuracy | 精度 Precision | 召回率 Recall | 准确率 Accuracy | 精度 Precision | 召回率 Recall | ||
原始近红外光谱 Raw near infrared spectroscopy | 99.92 | 99.92 | 99.92 | 99.96 | 99.96 | 99.96 | |
去趋势Detrend | 99.96 | 99.96 | 99.93 | 100.00 | 100.00 | 100.00 | |
一阶导数First derivative (1st-D) | 99.79 | 99.80 | 99.76 | 100.00 | 100.00 | 100.00 | |
均值中心化Mean center (MC) | 99.54 | 99.56 | 99.54 | 99.63 | 99.64 | 99.63 | |
标准变量变换 Standard normal variate (SNV) | 99.88 | 99.88 | 99.87 | 99.92 | 99.92 | 99.92 | |
多元散射校正 Multiplicative scatter correction (MSC) | 99.88 | 99.88 | 99.88 | 100.00 | 100.00 | 100.00 |
戴天虹, 翟 冰. 基于改进EfficientNet的木材识别研究. 森林工程, 2023, 39 (4): 93- 100. | |
Dai T H, Zhai B. Wood recognition research based on improved EfficientNet. Forest Engineering, 2023, 39 (4): 93- 100. | |
付立岩, 冯国红, 刘旭铭. 基于多元经验模态分解的可见/近红外光谱识别木材研究. 森林工程, 2023, 39 (4): 101- 109. | |
Fu L Y, Feng G H, Liu X M. Wood recognition by visible/near infrared spectroscopy based on multivariate empirical mode decomposition. Forest Engineering, 2023, 39 (4): 101- 109. | |
高振忠, 孙 瑾, 吴 鸿, 等. 樟科10属14种木材解剖学特征的比较研究. 林业科学研究, 2009, 22 (3): 413- 417.
doi: 10.3321/j.issn:1001-1498.2009.03.018 |
|
Gao Z Z, Sun J, Wu H, et al. Comparative study on wood anatomical structure of 14 species belonging to 10 genera of Lauraceae. Forest Research, 2009, 22 (3): 413- 417.
doi: 10.3321/j.issn:1001-1498.2009.03.018 |
|
何 拓, 刘守佳, 陆 杨, 等. 木材树种计算机视觉识别技术发展与应用. 林业工程学报, 2021a, 6 (3): 18- 27. | |
He T, Liu S J, Lu Y, et al. Advances and prospects of wood identification technology coupled with computer vision. Journal of Forestry Engineering, 2021a, 6 (3): 18- 27. | |
何 拓, 刘守佳, 陆 杨, 等. iWood: 基于卷积神经网络的濒危珍贵树种木材自动识别系统. 林业科学, 2021b, 57 (9): 152- 159. | |
He T, Liu S J, Lu Y, et al. iWood: an automated wood identification system for endangered and precious tree species using convolutional neural networks. Scientia Silvae Sinicae, 2021b, 57 (9): 152- 159. | |
刘守佳, 汪嘉君, 陆 杨, 等. 机器学习方法在木材树种识别领域的应用. 世界林业研究, 2023, 36 (5): 70- 75. | |
Liu S J, Wang J J, Lu Y, et al. Application of machine learning approaches to wood species identification. World Forestry Research, 2023, 36 (5): 70- 75. | |
宿恒硕, 吕 军, 丁志平, 等. 基于改进残差神经网络的木材识别算法. 林业科学, 2021, 57 (12): 147- 154. | |
Su H S, Lü J, Ding Z P, et al. Wood identification algorithm based on improved residual neural network. Scientia Silvae Sinicae, 2021, 57 (12): 147- 154. | |
孙 瑾, 王晓静, 王 飞, 等. 滇西南地区樟科17种木材解剖特征研究. 华南农业大学学报, 2014, 35 (5): 102- 107.
doi: 10.7671/j.issn.1001-411X.2014.05.018 |
|
Sun J, Wang X J, Wang F, et al. Wood anatomical characteristics of 17 Lauraceae species from southwest of Yunnan. Journal of South China Agricultural University, 2014, 35 (5): 102- 107.
doi: 10.7671/j.issn.1001-411X.2014.05.018 |
|
王登举. 全球林产品贸易现状与特点. 国际木业, 2019, 49 (3): 49- 53.
doi: 10.3969/j.issn.1671-4911.2019.03.020 |
|
Wang D J. Status quo and characteristics of global trade of forest products. International Wood Industry, 2019, 49 (3): 49- 53.
doi: 10.3969/j.issn.1671-4911.2019.03.020 |
|
赵子宇, 杨霄霞, 郭 慧, 等. 基于卷积神经网络模型的木材宏、微观辨识方法. 林业科学, 2021, 57 (6): 134- 143.
doi: 10.11707/j.1001-7488.20210615 |
|
Zhao Z Y, Yang X X, Guo H, et al. Recognition method of wood macro-and micro-structure based on convolution neural network. Scientia Silvae Sinicae, 2021, 57 (6): 134- 143.
doi: 10.11707/j.1001-7488.20210615 |
|
Bai R X, Meng Z, Xu Q S, et al. Fractional Fourier and time domain recurrence plot fusion combining convolutional neural network for bearing fault diagnosis under variable working conditions. Reliability Engineering & System Safety, 2023, 232, 109076. | |
Barmpoutis P, Dimitropoulos K, Barboutis I, et al. Wood species recognition through multidimensional texture analysis. Computers and Electronics in Agriculture, 2018, 144, 241- 248.
doi: 10.1016/j.compag.2017.12.011 |
|
Carmona R J, Wiemann M C, Baas P, et al. Forensic identification of CITES Appendix I. Cupressaceae using anatomy and mass spectrometry. IAWA Journal, 2020, 41 (4): 720- 739.
doi: 10.1163/22941932-bja10002 |
|
Chollet F. 2017. Xception: deep learning with depthwise separable convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu: HI,USA,1800−1807. | |
Eckmann J P, Kamphorst S O, Ruelle D. Recurrence plots of dynamical systems. Europhysics Letters (EPL), 1987, 4 (9): 973- 977.
doi: 10.1209/0295-5075/4/9/004 |
|
Fathurahman T, Gunawan P H, Prakasa E, et al. Wood classification of Japanese Fagaceae using partial sample area and convolutional neural networks. Journal of the Korean Wood Science and Technology, 2021, 49 (5): 491- 503.
doi: 10.5658/WOOD.2021.49.5.491 |
|
Han J C, Zhao P, Wang C K. Wood species recognition through FGLAM textural and spectral feature fusion. Wood Science and Technology, 2021, 55 (2): 535- 552.
doi: 10.1007/s00226-021-01262-0 |
|
He K M, Zhang X Y, Ren S Q, et al. 2016. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 770−778. | |
He T, Lu Y, Jiao L C, et al. Developing deep learning models to Automate rosewood tree species identification for CITES designation and implementation. Holzforschung, 2020, 74 (12): 1123- 1133.
doi: 10.1515/hf-2020-0006 |
|
He T, Mu S B, Zhou H K, et al. Wood species identification based on an ensemble of deep convolution neural networks. Wood Research, 2021, 66 (1): 1- 14. | |
Hinton G, Osindero S, Welling M, et al. Unsupervised discovery of nonlinear structure using contrastive backpropagation. Cognitive Science, 2006, 30 (4): 725- 731.
doi: 10.1207/s15516709cog0000_76 |
|
Hwang S W, Kobayashi K, Zhai S C, et al. Automated identification of Lauraceae by scale-invariant feature transform. Journal of Wood Science, 2018, 64 (2): 69- 77.
doi: 10.1007/s10086-017-1680-x |
|
Hwang S W, Sugiyama J. Computer vision-based wood identification and its expansion and contribution potentials in wood science: a review. Plant Methods, 2021, 17 (1): 47.
doi: 10.1186/s13007-021-00746-1 |
|
Jiao L C, Yu M, Wiedenhoeft A C, et al. DNA barcode authentication and library development for the wood of six commercial Pterocarpus species: the critical role of xylarium specimens. Scientific Reports, 2018, 8 (1): 1945.
doi: 10.1038/s41598-018-20381-6 |
|
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386 |
|
Lens F, Liang C, Guo Y H, et al. Computer-assisted timber identification based on features extracted from microscopic wood sections. IAWA Journal, 2020, 41 (4): 660- 680.
doi: 10.1163/22941932-bja10029 |
|
Liu Z F, Ci X Q, Li L, et al. DNA barcoding evaluation and implications for phylogenetic relationships in Lauraceae from China. PLoS ONE, 2017, 12 (4): e0175788.
doi: 10.1371/journal.pone.0175788 |
|
Liu Z F, Ma H, Zhang X Y, et al. 2022. Do taxon-specific DNA barcodes improve species discrimination relative to universal barcodes in Lauraceae? Botanical Journal of the Linnean Society, 199(4): 741−753. | |
Pan X, Li K, Chen Z J, et al. Identifying wood based on near-infrared spectra and four gray-level co-occurrence matrix texture features. Forests, 2021, 12 (11): 1527.
doi: 10.3390/f12111527 |
|
Rocha H S, Braga J W B, Kunze D C G C, et al. Identification of mahogany sliced veneer using handheld near-infrared spectroscopy device and multivariate data analysis. IAWA Journal, 2021, 42 (3): 336- 347.
doi: 10.1163/22941932-bja10054 |
|
Simonyan K, Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations (ICLR 2015), arXiv: 1409.1556. | |
Sohi A, Avramidis S, Mansfield S. Near-infrared spectroscopic separation of green chain sub-alpine fir lumber from a spruce-pine-fir mix. BioResources, 2017, 12 (2): 3720- 3727. | |
Sun J, Wu J Y, Wang X J, et al. Comparative wood anatomy of 56 species of Lauraceae from Yunnan, China. Brazilian Journal of Botany, 2015, 38 (3): 645- 656.
doi: 10.1007/s40415-015-0172-8 |
|
Szegedy C, Vanhoucke V, Ioffe S, et al. 2016. Rethinking the Inception architecture for computer vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2818−2826. | |
Wang C K, Zhao P, Li Z Y, et al. Comparison of VIS/NIR spectral curves plus RGB images with hyperspectral images for the identification of Pterocarpus species. Holzforschung, 2022, 76 (7): 579- 591.
doi: 10.1515/hf-2021-0194 |
|
Wang C K, Zhao P. Classification of wood species using spectral and texture features of transverse section. European Journal of Wood and Wood Products, 2021, 79 (5): 1283- 1296.
doi: 10.1007/s00107-021-01728-9 |
|
Yang S Y, Kwon O, Park Y, et al. Application of neural networks for classifying softwood species using near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 2020, 28 (5/6): 298- 307. |
[1] | 谢婉滢,刘文萍,王晗. 无人机松林图像早期松材线虫病害检测[J]. 林业科学, 2024, 60(9): 124-133. |
[2] | 张长春,李大方,张军国. 基于Wasserstein距离和相关对齐迁移学习的野生动物图像识别方法[J]. 林业科学, 2024, 60(8): 25-32. |
[3] | 齐建东,郑尚姿,陈子仪,马鐘添. 基于ConvNeXt的北京地区红外相机野生动物图像识别改进模型构建[J]. 林业科学, 2024, 60(8): 33-45. |
[4] | 徐竞怡,张志,闫飞,张雯悦. 基于GAN-DCNN的树叶识别[J]. 林业科学, 2024, 60(4): 40-51. |
[5] | 苏彤, 许杰. 基于生成对抗网络的树种识别方法[J]. 林业科学, 2024, 60(2): 97-105. |
[6] | 齐建东,马鐘添,张德怀,田赟. 基于BS-ResNeXt-50的密云地区野生动物图像识别[J]. 林业科学, 2023, 59(8): 112-122. |
[7] | 苗宇杰,祝诗平,普京,李俊贤,马羚凯,黄华. 基于卷积神经网络的家具木材图像种类识别[J]. 林业科学, 2023, 59(8): 133-140. |
[8] | 范学星,张慧春,邹义萍,黄玉萍,边黎明. 基于多光谱成像与机器学习的植物叶绿素含量反演[J]. 林业科学, 2023, 59(7): 78-88. |
[9] | 杨琨琪,张慧春,张萌,边黎明. 水肥胁迫对基于时间序列图像的苗木表型信息的影响[J]. 林业科学, 2023, 59(5): 61-70. |
[10] | 王露露,张有福,陈一博,陈春艳,宋晨慧. 塔柏刺形叶特征与叶面积估算模型[J]. 林业科学, 2023, 59(5): 81-87. |
[11] | 毛英伍,郭颖,张王菲,苏勇,关塬. 联合LiDAR、高光谱数据及3D-CNN方法的树种分类[J]. 林业科学, 2023, 59(3): 73-83. |
[12] | 苏佳杰,张哲宇,徐嘉俊,李彬,吕军,姚青. 基于深度双线性转换注意力机制网络的林业有害生物识别方法[J]. 林业科学, 2023, 59(2): 121-128. |
[13] | 冯慧敏,金崑. 基于卷积神经网络的雄性海南长臂猿声纹识别[J]. 林业科学, 2023, 59(1): 119-127. |
[14] | 袁莹,王雪峰. 基于多光谱图像的沉香幼苗冠层全氮量无损估测[J]. 林业科学, 2022, 58(9): 36-47. |
[15] | 齐建东,谭新新. 长白山红松阔叶林的净碳交换变化及基于时间卷积神经网络的模拟[J]. 林业科学, 2022, 58(2): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||