欢迎访问林业科学,今天是

林业科学 ›› 2024, Vol. 60 ›› Issue (10): 94-103.doi: 10.11707/j.1001-7488.LYKX20240285

• 研究论文 • 上一篇    下一篇

基于深度学习的75种阔叶材微观辨识方法

田智康1,葛浙东1,郑焕祺2,3,郑志帅1,周玉成1,*   

  1. 1. 山东建筑大学信息与电气工程学院 济南250101
    2. 山东建筑大学建筑城规学院 济南 250101
    3. 山东省产品质量检验研究院 济南250102
  • 收稿日期:2024-05-19 出版日期:2024-10-25 发布日期:2024-11-05
  • 通讯作者: 周玉成
  • 基金资助:
    泰山学者优势特色学科人才团队(2015162)。

Microscopic Identification Methods for 75 Types of Hardwood Based on Deep Neural Network

Zhikang Tian1,Zhedong Ge1,Huanqi Zheng2,3,Zhishuai Zheng1,Yucheng Zhou1,*   

  1. 1. School of Information and Electrical Engineering, Shandong Jianzhu University Jinan 250101
    2. School of Architecture and Urban Planning, Shandong Jianzhu University Jinan 250101
    3. Shandong Institute for Product Quality Inspection Jinan 250102
  • Received:2024-05-19 Online:2024-10-25 Published:2024-11-05
  • Contact: Yucheng Zhou

摘要:

目的: 对75种南美进口阔叶材提出微观图像辨识模型TimberIDNet75,为海关、进出口检疫检验以及从事木材鉴定研究的人员提供一种准确的多材种辨识方法。方法: TimberIDNet75模型是包含1个输入层、4个隐含层的34层卷积层的中浅层神经网络。为尽量扩大感受野以提取更多图像特征,输入层采用13×13×256的卷积核,对每张图像提取256类特征,经激活、池化处理后作为输出。第1个隐含层采用2次卷积、激活后再进行残差修正,称作“两卷一修正块”。第1个隐含层包含3个“两卷一修正块”,提取256类特征作为输出。第2个隐含层包含4个“两卷一修正块”,再次提取512类特征作为输出。第3个隐含层包含6个“两卷一修正块”,对上一层的输出进行特征提取,获得1 024个类的特征。第4个隐含层包含3个“两卷一修正块”,对第3层的输出进行特征提取,获得2 048个类的特征,经全局平均池化后输入到全连接层映射出75个树种的分类。结果: TimberIDNet75模型的准确率达99.4%,损失值为0.044。将TimberIDNet75模型与现阶段较先进的深度学习模型进行比较,ResNet模型的准确率为98.1%、VGGNet模型的准确率为 97.1%、GoogleNet模型的准确率为96.2%、AlexNet模型的准确率为94.7%、ViT模型的准确率为53.2%,TimberIDNet75模型的准确率相比其中准确率最高的ResNet模型提高1.3%。利用TimberIDNet75模型对随机获取的75种进口阔叶材微观解剖样本进行实际测试,样本全部准确辨识,准确率达100%。结论: TimberIDNet75模型中的“两卷一修正块”,在节省机器资源的同时,可消除模型梯度下降导致过拟合的问题,同时利用残差法使得模型训练时人工干预降至最低,准确率和效率大幅提升。

关键词: 木材微观解剖, 深度学习网络模型, 木材材种辨识, 材种微观特征提取

Abstract:

Objective: A microscopic image recognition model TimberIDNet75 is proposed in this paper for 75 types of South American imported broadleaf timber, which provides an accurate method of multi-species recognition for customs, import and export quarantine inspection, and personnel engaged in timber identification research. Method: The TimberIDNet75 model is a medium-shallow neural network with 34 convolutional layers containing one input layer and four hidden layers. To expand the receptive field as much as possible to extract more image features, the input layer uses a 13×13×256 convolutional kernel to extract 256 types of features for each image, which are activated and pooled as the output. In the first hidden layer, two convolutions, activation and then residual correction are used, which is called“two-convolutions-one-correction-block”(TCOCB). The first hidden layer contains 3 TCOCBs, and 256 types of features are extracted as output. Then the second hidden layer contains 4 TCOCBs, extracting 512 classes of features as output. The third hidden layer contains 6 TCOCBs extracting features from the previous layer’s output, obtaining 1 024 classes of features. The fourth hidden layer contains 3 TCOCBs, after feature extraction from the output of layer 3, the features of 2 048 species were obtained, which were input into the fully connected layer after global average pooling to map the classification of 75 species. Result: The TimberIDNet75 model has an accuracy of 99.4% with a loss value of 0.044. Comparing the TimberIDNet75 model with the existing advanced deep learning models, ResNet model has an accuracy of 98.1%, VGGNet model has an accuracy of 97.1%, GoogleNet model has an accuracy of 96.2%, AlexNet model accuracy is 94.7%, ViT model accuracy is 53.2%, and TimberIDNet75 model accuracy is improved by 1.3% compared to the ResNet model, which has the highest accuracy among them. Then the TimberIDNet75 model was used to carry out practical tests on 75 randomly obtained microanatomical samples of imported broadleaf timber, and all the samples were accurately identified, with an accuracy rate of 100%. Conclusion: The TCOCB in the TimberIDNet75 model can eliminate the overfitting problem caused by model gradient drop while saving machine resources, meanwhile, the residual method makes it possible to minimize the manual intervention during model training, and the accuracy and efficiency are greatly improved.

Key words: wood microanatomy, deep learning network model, wood species identification, wood microanatomy feature extraction

中图分类号: