 
		林业科学 ›› 2021, Vol. 57 ›› Issue (9): 42-51.doi: 10.11707/j.1001-7488.20210905
周紫晶1,范付华1,*,尚先文1,覃慧娟1,王聪慧1,丁贵杰1,谭健晖2
收稿日期:2021-04-21
									
				
									
				
									
				
											出版日期:2021-09-25
									
				
											发布日期:2021-11-29
									
			通讯作者:
					范付华
												基金资助:Zijing Zhou1,Fuhua Fan1,*,Xianwen Shang1,Huijuan Qin1,Conghui Wang1,Guijie Ding1,Jianhui Tan2
Received:2021-04-21
									
				
									
				
									
				
											Online:2021-09-25
									
				
											Published:2021-11-29
									
			Contact:
					Fuhua Fan   
												摘要:
目的: 对2年生马尾松幼苗进行不同浓度IAA喷施处理,结合生理生化、形态解剖结构及转录组水平变化等综合分析,揭示外源IAA对马尾松苗期茎干次生生长的影响机制,为阐明马尾松苗期茎干次生生长的分子调控机制奠定基础,可以为培育速生高产的马尾松新品系提供一定的理论参考。方法: 对2年生马尾松幼苗进行不同浓度IAA(0、1、50、100 mg·L-1)喷施处理,处理160天后进行生长指标、解剖结构、生理生化指标的测定;通过高通量转录组测序鉴定差异表达基因,对差异表达基因进行GO和KEGG功能分析。结果: IAA处理对2年生马尾松的地径、细胞生长(木质部、韧皮部厚度以及木质部细胞层数)、木材主要成分(木质素、纤维素及半纤维素含量)及内源激素含量(生长素、赤霉素及油菜素内酯)具有显著的促进作用(P<0.05);通过Illumina测序技术对对照组和IAA处理的6个cDNA文库进行测序,最终得到IAA处理后差异表达基因778个(包括482个上调表达基因和296个下调表达基因),GO分析表明这些差异基因主要富集于细胞成分、分子功能和生物过程中共计22个类别,KEGG分析表明它们参与了64种不同的途径,并筛选出与马尾松次生生长相关的差异表达基因(BRL1、GASA6、CAD和CESA2等)。结论: IAA处理能够改变内源激素含量,促进细胞分裂,增加木质素、纤维素和半纤维素积累,从而促进马尾松茎干的次生生长。
中图分类号:
周紫晶,范付华,尚先文,覃慧娟,王聪慧,丁贵杰,谭健晖. 外源IAA对马尾松幼苗茎干次生生长的影响[J]. 林业科学, 2021, 57(9): 42-51.
Zijing Zhou,Fuhua Fan,Xianwen Shang,Huijuan Qin,Conghui Wang,Guijie Ding,Jianhui Tan. Effects of Exogenous IAA on Stem Secondary Growth of Pinus massoniana Seedlings[J]. Scientia Silvae Sinicae, 2021, 57(9): 42-51.
 
												
												表1
引物序列"
| 基因 Gene | 序列 Sequence(5′→3′) | 
| TRINITY_DN10179_c0_g1 | F: TGATGGATGGTGGTTGATAC | 
| R: CTGATGGGCAAACTGAGATA | |
| TRINITY_DN8564_c0_g2 | F: GCGTATTCCGCCAGAGTG | 
| R: TCCAGAACGAGTGCCCCT | |
| TRINITY_DN5190_c1_g1 | F: CAGGCGACTCCACCTACAACT | 
| R: TGCGGAACACCTAATCCAAAC | |
| TRINITY_DN2065_c0_g1 | F: GAACGCAGAGCAATGAAG | 
| R: AAGCCCACCACTATGACC | |
| TRINITY_DN11133_c0_g2 | F: TCACGCTTCCTTTGGCTTTT | 
| R: CGTACGGTCTGCACTTCATC | |
| TRINITY_DN3030_c1_g1 | F: AGAGCAGATTCCAGCAGA | 
| R: CGGGTTTCCAGTAGATGA | |
| TRINITY_DN39456_c0_g1 | F: TCAGCGGACCCTGTTCTA | 
| R: GACAAAGTTGCCGTGGAG | |
| TRINITY_DN40433_c0_g1 | F: AGGGACTGGCTCCTTGTG | 
| R: CTTCGGAATCGCACCTTT | |
| TRINITY_DN99422_c0_g3 | F: GAAGACTTGAAATGCCTGAC | 
| R: ATAGACCTTGAACGCCTC | |
| UBC | F: GATTTATTTCATTGGCAGGC | 
| R: AGGATCATCAGGATTTGGGT | 
 
												
												表2
IAA处理后马尾松幼苗茎干的木质素、纤维素和半纤维含量"
| IAA | 木质素含量 Lignin content/(mg·g-1) | 纤维素含量 Cellulose content/(mg·g-1) | 半纤维素含量 Hemicellulose content/(mg·g-1) | 
| CK | 89.95±0.98 a | 199.30±35.81 a | 160.51±1.01 a | 
| 1 mg·L-1 | 116.33±0.07 b | 292.35±18.03 b | 207.13±15.40 b | 
| 50 mg·L-1 | 122.43±3.92 b | 287.18±16.06 b | 202.68±5.75 b | 
| 100 mg·L-1 | 124.94±7.08 b | 285.85±12.47 b | 187.36±3.05 ab | 
 
												
												表3
IAA处理后马尾松幼苗茎干内源激素含量①"
| 内源激素Endogenous hormone/(ng·g-1) | CK | IAA处理 IAA treatment | |
| 生长素类 Auxins | 吲哚-3-乙酸Indole-3-acetic acid(IAA) | 58.67±1.95 | 113.67±4.91** | 
| 氧化吲哚乙酸Oxidized indoleacetic acid(OxIAA) | 0.00 | 114.00±4.73** | |
| 吲哚-3-甲醛Indole-3-carboxaldehyde(ICAld) | 4.48±0.04 | 133.00±3.51** | |
| 吲哚-3-乙酸甲酯Indole-3-methyl acetate(MEIAA) | 3.85±0.10 | 7.18±0.28** | |
| 吲哚乙酸-亮氨酸Indoleacetic acid-leucine(IAA-Leu) | 1.06±0.08** | 0.56±0.03 | |
| 吲哚乙酸-天冬氨酸Indoleacetic acid-aspartic acid(IAA-Asp) | 1.89±0.13** | 1.27±0.06 | |
| 色胺Tryptamine(TRA) | 0.16±0.01 | 0.14±0.00 | |
| 色氨酸Tryptophan(TRP) | 2 156.67±53.64* | 1 903.33±43.33 | |
| 3-吲哚丙酸3-Indolepropionic acid(IPA) | 42.63±0.92 | 44.30±2.86 | |
| 赤霉素类 Gibberellins | 赤霉素1 Gibberellin1(GA1) | 17.67±0.69 | 24.60±2.46 | 
| 赤霉素15 Gibberellin15(GA15) | 0.27±0.05 | 0.27±0.03 | |
| 油菜素内酯类 Brassinolides | 油菜素内酯Brassinolide(BR) | 0.05±0.00 | 0.09±0.00** | 
| 油菜素甾酮Castasterone(CS) | 19.89±1.18 | 27.03±0.99** | |
| 28-高油菜素甾酮28-homocastasterone(28-homoCS) | 1.25±0.07 | 1.58±0.03** | |
| 香蒲甾醇Typhasterol(TY) | 36.38±0.31 | 35.42±0.32 | |
| 6-脱氧油菜素甾酮6-deoxocastasterone(6-deoxoCS) | 0.02±0.00 | 0.03±0.00 | 
 
												
												表4
IAA处理后马尾松幼苗茎部转录组数据统计①"
| 样本 Sample | 原始读数 Raw reads | 清洁读数(清洁读数/原始读数) Clean reads(clean reads/raw reads) | 错误率 Error rate(%) | Q20(%) | Q30(%) | GC含量 GC content(%) | 
| CK1 | 79 111 552 | 78 288 654(98.96%) | 0.024 4 | 98.31 | 94.73 | 44.47 | 
| CK2 | 73 641 850 | 72 846 758(98.92%) | 0.024 3 | 98.33 | 94.83 | 44.96 | 
| CK3 | 86 263 202 | 85 424 670(99.03%) | 0.024 4 | 98.28 | 94.66 | 44.65 | 
| IAA1 | 87 975 948 | 87 084 030(98.99%) | 0.024 2 | 98.36 | 94.87 | 44.83 | 
| IAA2 | 93 638 284 | 92 535 608(98.82%) | 0.024 6 | 98.24 | 94.55 | 45.16 | 
| IAA3 | 77 429 912 | 76 588 978(98.91%) | 0.024 7 | 98.17 | 94.39 | 44.87 | 
 
												
												表5
次生生长相关基因的鉴定与表达"
| 基因号 Gene ID | 注释 Description | 差异倍数 Log2FC | 表达量Expression quantity | |
| CK | IAA | |||
| 激素Hormone | ||||
| TRINITY_DN6209_c0_g1 | 油菜素内酯受体激酶Brassinosteroid LRR receptor kinase(BRL1) | 1.92 | 9.15 | 30.11 | 
| TRINITY_DN105600_c0_g2 | 赤霉素响应蛋白Gibberellin-regulated protein(GASA6) | 1.70 | 2.09 | 6.35 | 
| 木质素Lignin | ||||
| TRINITY_DN40433_c0_g1 | 肉桂醇脱氢酶Cinnamyl alcohol dehydrogenases(CAD) | 7.48 | 0 | 1.06 | 
| 纤维素Cellulose | ||||
| TRINITY_DN2065_c0_g1 | 纤维素合酶Cellulose synthase(CESA2) | 1.13 | 23.30 | 45.01 | 
| 陈海燕, 刘凯, 余敏, 等. 外源激素IAA和GA3对马尾松应压木形成的影响. 北京林业大学学报, 2015, 37 (5): 134- 139. | |
| Chen H Y , Liu K , Yu M , et al. Effect of exogenous IAA and GA3 on formation of compression wood of Pinus massoniana Lamb. Journal of Beijing Forestry University, 2015, 37 (5): 134- 139. | |
| 丁贵杰, 严仁发, 齐新民. 不同种源马尾松造林效果及经济效益对比分析. 林业科学, 1994, (6): 506- 512. | |
| Ding G J , Yan R F , Qi X M . A comparative analysis on planting result and economic benefit of Pinus massoniana Lamb. from different provenance. Scientia Silvae Sinicae, 1994, (6): 506- 512. | |
| 郭丽玲, 潘萍, 欧阳勋志, 等. 间伐补植对马尾松低效林生长及林分碳密度的短期影响. 西南林业大学学报: 自然科学, 2019, 39 (3): 48- 54. | |
| Guo L L , Pan P , Ouyang X Z , et al. Short-term effect of thinning and replanting measures on tree growth and stand carbon density of low-efficiency Pinus massoniana forest. Journal of Southwest Forestry University: Natural Science, 2019, 39 (3): 48- 54. | |
| 吴修蓉, 周运超, 余星. 镁肥对马尾松幼苗生长与叶片元素积累的影响. 亚热带植物科学, 2019, 48 (1): 11- 16. | |
| Wu X R , Zhou Y C , Yu X . Effect of magnesium fertilizer on growth and element accumulation of Pinus massoniana seedlings. Subtropical Plant Science, 2019, 48 (1): 11- 16. | |
| 张婷, 文晓鹏.  混合接种外生菌根菌对马尾松种子萌发及幼苗生长的影响. 种子, 2016, 35 (10): 1- 5. doi: 10.3969/j.issn.1000-8071.2016.10.001 | |
| Zhang T ,  Wen X P .  Effect of ectomycorrhizal fungi combination on seed germination and seedling growth of Masson Pine(Pinus massoniana). Seed, 2016, 35 (10): 1- 5. doi: 10.3969/j.issn.1000-8071.2016.10.001 | |
| 周乃富, 张俊佩, 刘昊, 等. 木本植物非均质化组织石蜡切片制作方法. 植物学报, 2018, 53 (5): 653- 660. | |
| Zhou N F , Zhang J P , Liu H , et al. New protocols for paraffin sections of heterogeneous tissues of woody plants. Chinese Bulletin of Botany, 2018, 53 (5): 653- 660. | |
| Bargmann B O R ,  Vanneste S ,  Krouk G , et al.  A map of cell type-specific auxin responses. Molecular Systems Biology, 2013, 9, 688. doi: 10.1038/msb.2013.40 | |
| Ben-Nissan G ,  Lee J ,  Borohov A , et al.  GIP, a Petunia hybrida GA-induced cysteine-rich protein: a possible role in shoot elongation and transition to flowering. The Plant Journal, 2004, 37 (2): 229- 238. doi: 10.1046/j.1365-313X.2003.01950.x | |
| Bjorklund S ,  Antti H ,  Uddestrand I , et al.  Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. The Plant Journal, 2007, 52 (3): 499- 511. doi: 10.1111/j.1365-313X.2007.03250.x | |
| Brackmann K ,  Qi J ,  Gebert M , et al.  Spatial specificity of auxin responses coordinates wood formation. Nature Communications, 2018, 9, 875. doi: 10.1038/s41467-018-03256-2 | |
| Cano-Delgado A ,  Yin Y ,  Yu C , et al.  BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development, 2004, 131 (21): 5341- 5351. doi: 10.1242/dev.01403 | |
| Chaiwanon J ,  Wang Z .  Spatiotemporal brassinosteroid signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots. Current Biology, 2015, 25 (8): 1031- 1042. doi: 10.1016/j.cub.2015.02.046 | |
| Chen J ,  Wang L ,  Immanen J , et al.  Differential regulation of auxin and cytokinin during the secondary vascular tissue regeneration in Populus trees. New Phytologist, 2019, 224 (1): 188- 201. doi: 10.1111/nph.16019 | |
| Fan F, Cui B, Zhang T, et al. 2014. The temporal transcriptomic response of Pinus massoniana seedlings to phosphorus deficiency. PLoS ONE, 9: e1050688. | |
| Glweiler L ,  Uan C ,  Ller A , et al.  Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissues. Science, 1998, 282 (5397): 2226- 2230. doi: 10.1126/science.282.5397.2226 | |
| Joshi C P ,  Bhandari S ,  Ranjan P , et al.  Genomics of cellulose biosynthesis in poplars. New Phytology, 2004, 164, 53- 61. doi: 10.1111/j.1469-8137.2004.01155.x | |
| Li A ,  Xia T ,  Xu W , et al.  An integrative analysis of four CESA isoforms specific for fiber cellulose production between Gossypium hirsutum and Gossypium barbadense. Planta, 2013, 237 (6): 1585- 1597. doi: 10.1007/s00425-013-1868-2 | |
| Livak K J ,  Schmittgen T D .  Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods, 2001, 25 (4): 402- 408. doi: 10.1006/meth.2001.1262 | |
| Ma D ,  Xu C ,  Alejos-Gonzalez F , et al.  Overexpression of Artemisia annua cinnamyl alcohol dehydrogenase increases lignin and coumarin and reduces artemisinin and other sesquiterpenes. Frontiers in Plant Science, 2018, 9, 828. doi: 10.3389/fpls.2018.00828 | |
| Maleki S S , Mohammadi K , Ji K . Characterization of cellulose synthesis in plant cells. The Scientific World Journal, 2016, 2016, 8641373. | |
| Maleki S S ,  Mohammadi K ,  Movahedi A , et al.  Increase in cell wall thickening and biomass production by overexpression of PmCesA2 in poplar. Frontiers in Plant Science, 2020, 11, 110. doi: 10.3389/fpls.2020.00110 | |
| Mellerowicz E J ,  Baucher M ,  Sundberg B , et al.  Unravelling cell wall formation in the woody dicot stem. Plant Molecular Biology, 2001, 47 (1/2): 239- 274. doi: 10.1023/A:1010699919325 | |
| Muller C J ,  Valdes A E ,  Wang G , et al.  PHABULOSA mediates an auxin signaling loop to regulate vascular patterning in Arabidopsis. Plant Physiology, 2016, 170 (2): 956- 970. doi: 10.1104/pp.15.01204 | |
| Nairn C J ,  Haselkorn T .  Three loblolly pine CesA genes expressed in developing xylem are orthologous to secondary cell wall CesA genes of angiosperms. The New Phytologist, 2005, 166 (3): 907- 915. doi: 10.1111/j.1469-8137.2005.01372.x | |
| Nemhauser J L ,  Mockler T C ,  Chory J .  Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biology, 2004, 2 (9): E258. doi: 10.1371/journal.pbio.0020258 | |
| Nieminen K M ,  Kauppinen L ,  Helariutta Y .  A weed for wood? Arabidopsis as a genetic model for xylem development. Plant Physiology, 2004, 135 (2): 653- 659. doi: 10.1104/pp.104.040212 | |
| Pan H ,  Zhou R ,  Louie G V , et al.  Structural studies of cinnamoyl-CoA reductase and cinnamyl-alcohol dehydrogenase, key enzymes of monolignol biosynthesis. Plant Cell, 2014, 26 (9): 3709- 3727. doi: 10.1105/tpc.114.127399 | |
| Pan X ,  Welti R ,  Wang X .  Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nature Protocols, 2010, 5 (6): 986- 992. doi: 10.1038/nprot.2010.37 | |
| Ponniah S K , Shang Z , Akbudak M A , et al. Down-regulation of hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase, cinnamoyl CoA reductase, and cinnamyl alcohol dehydrogenase leads to lignin reduction in rice(Oryza sativa L. ssp. japonica cv. Nipponbare). Plant Biotechnology Reports, 2017, 11 (1): 17- 27. | |
| Sakamoto T ,  Morinaka Y ,  Inukai Y , et al.  Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice. Plant Journal, 2013, 73 (4): 676- 688. doi: 10.1111/tpj.12071 | |
| Savidge R A .  Auxin and ethylene regulation of diameter growth in trees. Tree Physiology, 1988, 4 (4): 401- 414. doi: 10.1093/treephys/4.4.401 | |
| Savidge R A .  The role of plant hormones in higher plant cellular differentiation Ⅱ: Experiments with the vascular cambium, and sclereid and tracheid differentiation in the pine, Pinus contorta. The Histochemical Journal, 1983, 15 (5): 447- 466. doi: 10.1007/BF01002699 | |
| Spicer R ,  Groover A .  Evolution of development of vascular cambia and secondary growth. New Phytologist, 2010, 186 (3): 577- 592. doi: 10.1111/j.1469-8137.2010.03236.x | |
| Taylor B H ,  Scheuring C F .  A molecular marker for lateral root initiation: the RSI-1 gene of tomato(Lycopersicon esculentum Mill) is activated in early lateral root primordia. Molecular General Genetics, 1994, 243 (2): 148- 157. doi: 10.1007/BF00280311 | |
| Tuominen H ,  Puech L ,  Fink S , et al.  A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiology, 1997, 115 (2): 577- 585. doi: 10.1104/pp.115.2.577 | |
| Uggla C ,  Mellerowicz E J ,  Sundberg B .  Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiology, 1998, 117 (1): 113- 121. doi: 10.1104/pp.117.1.113 | |
| Yao X ,  Remko O .  PDK1 regulates auxin transport and Arabidopsis vascular development through AGC1 kinase PAX. Nature Plants, 2020, 6, 544- 555. doi: 10.1038/s41477-020-0650-2 | |
| Yu M ,  Liu K ,  Liu S , et al.  Effect of exogenous IAA on tension wood formation by facilitating polar auxin transport and cellulose biosynthesis in hybrid poplar(Populus deltoides×Populus nigra) wood. Holzforschung, 2017, 71 (2): 179- 188. doi: 10.1515/hf-2016-0078 | |
| Yuan H ,  Zhao L ,  Guo W , et al.  Exogenous application of phytohormones promotes growth and regulates expression of wood formation-related genes in Populus simonii×P. nigra. International Journal of Molecular Sciences, 2019, 20 (3): 792. doi: 10.3390/ijms20030792 | |
| Zhao C ,  Craig J C ,  Petzold H E , et al.  The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl. Plant Physiology, 2005, 138 (2): 803- 818. doi: 10.1104/pp.105.060202 | |
| Zheng L ,  Gao C ,  Zhao C , et al.  Effects of brassinosteroid associated with auxin and gibberellin on apple tree growth and gene expression patterns. Horticultural Plant Journal, 2019, 5 (3): 93- 108. doi: 10.1016/j.hpj.2019.04.006 | |
| Zhong C , Xu H , Ye S , et al. Gibberellic acid-stimulated Arabidopsis6 serves as an integrator of gibberellin, abscisic acid, and glucose signaling during seed germination in Arabidopsis. Plant Physiology, 2015a, 169 (3): 2288- 2303. | |
| Zhong R , Ye Z . Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant and Cell Physiology, 2015b, 56 (2SI): 195- 214. | |
| Zhou A ,  Wang H ,  Walker J C , et al.  BRL1, a leucine-rich repeat receptor-like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signaling. The Plant Journal, 2004, 40 (3): 399- 409. doi: 10.1111/j.1365-313X.2004.02214.x | 
| [1] | 陈星州, 周国英, 陈行钢, 江玲玉, 包安华, 刘君昂. 油茶炭疽病菌果生刺盘孢效应子的筛选[J]. 林业科学, 2021, 57(9): 110-120. | 
| [2] | 彭欣, 王瀚棠, 郭春晖, 杨振德, 周静, 王雪, 丁芷柔. 入侵性致瘿害虫桉树枝瘿姬小蜂(膜翅目:姬小蜂科)EST-SSR开发及隐种鉴定[J]. 林业科学, 2021, 57(9): 140-151. | 
| [3] | 王海洋,马千里. 马尾松树皮纳米木质纤维素气凝胶吸附剂对Cr3+、Cu2+、Pb2+、Ni2+的吸附性能及机理[J]. 林业科学, 2021, 57(7): 166-174. | 
| [4] | 叶琳峰,李彦,王忠媛,陆世通,潘天天,陈森,谢江波. 湿润地区3种松属植物枝和根导水系统的效率-安全关系[J]. 林业科学, 2021, 57(7): 194-204. | 
| [5] | 蔡金峰,杨晓明,郁万文,汪贵斌,曹福亮. 基于苦楝转录组测序的SSR分子标记开发[J]. 林业科学, 2021, 57(6): 85-92. | 
| [6] | 贺然,王瑞珍,应玥,曲良建,张永安. 伊氏线虫真菌碳氮条件下的表型和毒力基因表达差异[J]. 林业科学, 2021, 57(4): 107-115. | 
| [7] | 温小遂,宋墩福,杨忠岐,王忠辉,施明清. 天敌花绒寄甲与寄主松褐天牛成虫出现期的关系[J]. 林业科学, 2020, 56(9): 193-200. | 
| [8] | 王胤,姚瑞玲. 继代培养中马尾松生根能力及其与内源激素含量的相关分析[J]. 林业科学, 2020, 56(8): 38-46. | 
| [9] | 朱丽华,章欣月,夏馨蕊,万羽,代善俊,叶建仁. 无细菌松材线虫对马尾松的致病性[J]. 林业科学, 2020, 56(7): 63-69. | 
| [10] | 王晓荣,雷蕾,付甜,潘磊,曾立雄,肖文发. 抚育择伐对马尾松林凋落叶分解速率和养分释放的短期影响[J]. 林业科学, 2020, 56(4): 12-21. | 
| [11] | 朱沛煌,陈妤,朱灵芝,李荣,季孔庶. 马尾松转录组密码子使用偏好性及其影响因素[J]. 林业科学, 2020, 56(4): 74-81. | 
| [12] | 武星,胡兴峰,陈佩珍,孙晓波,吴帆,季孔庶. 马尾松PmPIN1基因的克隆及功能分析[J]. 林业科学, 2020, 56(3): 184-192. | 
| [13] | 闫小莉, 胡文佳, 马远帆, 霍昱帆, 王拓, 马祥庆. 异质性供氮环境下杉木、马尾松、木荷氮素吸收偏好及其根系觅氮策略[J]. 林业科学, 2020, 56(2): 1-11. | 
| [14] | 孙凯,吴家森,盛卫星,姜培坤,张云晴,葛江飞. 亚热带不同林龄马尾松林地上器官植硅体碳封存潜力[J]. 林业科学, 2020, 56(12): 10-18. | 
| [15] | 袁秀锦, 肖文发, 雷静品, 潘磊, 王晓荣, 崔鸿侠, 胡文杰. 三峡库区马尾松林穿透雨和树干茎流空间变异特征[J]. 林业科学, 2020, 56(1): 10-19. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||