欢迎访问林业科学,今天是

林业科学 ›› 2024, Vol. 60 ›› Issue (1): 68-79.doi: 10.11707/j.1001-7488.LYKX20230138

• • 上一篇    下一篇

闽楠群体遗传结构分析与核心种质库构建

张俊红1,王洋1,周生财2,吴小林3,吴仁超3,杨琪1,张毓婷1,童再康1,*()   

  1. 1. 浙江农林大学省部共建亚热带森林培育国家重点实验室 杭州311300
    2. 丽水职业技术学院 丽水 323000
    3. 浙江庆元县实验林场 庆元 323800
  • 收稿日期:2023-04-06 出版日期:2024-01-25 发布日期:2024-01-29
  • 通讯作者: 童再康 E-mail:zktong@zjfc.edu.cn
  • 基金资助:
    国家自然科学基金项目(32171828);浙江省农业新品种选育重大科技专项(2021C02070-10)。

Genetic Structure Analysis and Core Germplasm Collection Construction of Phoebe bournei Populations

Junhong Zhang1,Yang Wang1,Shengcai Zhou2,Xiaolin Wu3,Renchao Wu3,Qi Yang1,Yuting Zhang1,Zaikang Tong1,*()   

  1. 1. State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University Hangzhou 311300
    2. Lishui Vocational and Technical College Lishui 323000
    3. Experimental Forest Farm of Qingyuan County, Zhejiang Provice Qingyuan 323800
  • Received:2023-04-06 Online:2024-01-25 Published:2024-01-29
  • Contact: Zaikang Tong E-mail:zktong@zjfc.edu.cn

摘要:

目的: 基于SSR分子标记技术研究珍稀濒危保护树种闽楠群体的遗传结构,构建核心种质资源库,为种质资源的科学管理、有效保护和高效利用提供理论依据。方法: 利用33对多态性SSR引物,分析来自福建、江西、湖南、浙江、广西5省(区)27个种源地218个闽楠家系425份种质资源群体的遗传多样性和遗传结构。应用DateTrans1.0联合Popgene32软件计算观测等位基因数(Na)、有效等位基因数(Ne)、观测杂合度(Ho)、期望杂合度(He)、Shannon信息指数(I) 和Nei’s基因多样性指数(H);运用STRUCTURE 2.3.4软件对9个闽楠群体进行遗传类群划分。采用最小距离逐步取样法构建核心种质库,通过对相关遗传参数的t检验验证核心种质库的有效性。结果: 依据种质来源地的地理分布,218个家系可分成9个群体;种质资源群体的平均有效等位基因数(Ne)、观测杂合度(Ho)、期望杂合度(He)均值、Shannon信息指数(I)分别为2.159、0.224、0.477和0.841,表明闽楠种质资源群体具较高遗传多样性;群体遗传结构分析表明,9个群体可划分为3个亚群;425份原始种质经最小距离逐步聚类取样得到85份核心种质和340份保留种质,核心种质占原始种质的20%,其NaNeHoHeIH保留率分别为92.318%、103.803%、116.652%、105.052%、103.341%和104.664%。t检验表明核心种质和原始种质的遗传多样性参数无显著差异,能充分代表原始种质的遗传多样性。结论: 构建的核心种质库在保留原始种质库遗传多样性的基础上,去除遗传冗余,有利于闽楠种质资源的有效保护和科学利用,为进一步育种工作奠定基础。

关键词: 闽楠, 群体结构, SSR分子标记, 遗传多样性, 核心种质库

Abstract:

Objective: This study aims to provide a theoretical basis for scientific management, effective protection and efficient utilization of germplasm resources, by investigating population structure of collection germplasm resources of Phoebe bournei with SSR markers, and constructing a core collection of the germplasm resources. Method: A total of 33 pairs of SSR primers were used to investigate the genetic diversity and genetic structure of 425 individual trees of P. bournei belonging to 218 subfamilies collected from 27 provenances of five provinces (autonomous region), including Fujian, Jiangxi, Hunan, Zhejiang, and Guangxi. Genetic diversity parameters such as number of observed alleles (Na), effective number of alleles (Ne), observed heterozygosity (Ho), Shannon’s information index (I), Nei’s diversity index (H) were calculated by combined DateTrans1.0 and Popgene32 software. The genetic structure of nine populations was analyzed using STRUCTURE 2.3.4 software. The core collection was constructed by using the method of grouping and stepwise clustering with the minimum distance. The genetic diversity parameters were examined by t-test, to verify the validity of the core collection for P. bournei. Result: According to the geographical distribution of germplasm sources, 218 families can be divided into 9 populations. A total of 130 alleles were detected at 33 SSR loci, and the average number of effective alleles (Ne) was 2.159, the average observed heterozygosity (Ho) was 0.224, the average expected heterozygosity (He) was 0.477, and the Shannon information index (I) average value was 0.841, indicating that there was the moderate genetic diversity in the germplasm resources of P. bournei. Genetic structure analysis classified nine populations into three groups. From the 425 original germplasm resources of P. bournei, 85 core germplasms and 340 reserved germplasms were obtained through stepwise cluster sampling. The core germplasms accounted for 20% of the original germplasms, and the retention rates of its Na, Ne, Ho, He, I, and H were 92.318%, 103.803%, 116.652%, 105.052%, 103.341%, and 104.664%, respectively. The t-test analysis showed that there was no significant difference in the genetic diversity parameters between the core germplasm and the original germplasm, indicating that the core germplasm was able to fully represent the genetic diversity of the original germplasm. Conclusion: The core germplasm collection preserves the genetic diversity information of the original collection, which removes the genetic redundancy. The results are beneficial to the effective protection and scientific utilization of P. bournei resources and lay a solid foundation for further breeding in P. bournei.

Key words: Phoebe bournei, germplasm resources, SSR markers, genetic diversity, core collection

中图分类号: