|
杜常健, 张 敏, 周星鲁, 等. 杨树杂交群体苗期生长性状的全基因组选择研究. 林业科学研究, 2023, 36 (6): 11- 19.
|
|
Du C J, Zhang M, Zhou X L, et al. Genome-wide selection of seedling growth traits in poplar hybrid populations. Forest Research, 2023, 36 (6): 11- 19.
|
|
杜庆章, 战鹏宇, 李 鹏, 等. 基因组选择研究进展及其在林木中的发展趋势. 北京林业大学学报, 2020, 42 (11): 1- 8.
|
|
Du Q Z, Zhan P Y, Li P, et al. Advances in genomic selection and its development trend in forest. Journal of Beijing Forestry University, 2020, 42 (11): 1- 8.
|
|
贾会霞, 孙 佩, 李建波, 等. 丹红杨×转BtCry1Ac欧洲黑杨杂交子代抗虫性及生长量测定. 分子植物育种, 2017, 15 (10): 4101- 4109.
|
|
Jia H X, Sun P, Li J B, et al. Insect-resistance and growth measurement of hybrid progeny from Populus deltoides cl. Danhong and transgenic P. nigra with BtCry1Ac gene. Molecular Plant Breeding, 2017, 15 (10): 4101- 4109.
|
|
康向阳. 论林木常规育种与非常规育种及其关系. 北京林业大学学报, 2023, 45 (6): 1- 7.
|
|
Kang X Y. On conventional and unconventional tree breeding and their relationships. Journal of Beijing Forestry University, 2023, 45 (6): 1- 7.
|
|
孙伟博, 王 璞, 杨梓堃, 等. 转Bt基因南林895杨对美国白蛾抗虫性研究. 中南林业科技大学学报, 2020, 40 (7): 107- 118.
|
|
Sun W B, Wang P, Yang Z K, et al. Study on the insect resistance of Bt transgenic poplar Nanlin 895 to Hyphantria cunea. Journal of Central South University of Forestry & Technology, 2020, 40 (7): 107- 118.
|
|
魏瑞研, 张卫华, 徐 放, 等. 红锥生长性状的全基因组选择与优良子代早期评选. 林业科学, 2024, 60 (12): 83- 91.
|
|
Wei R Y, Zhang W H, Xu F, et al. Genomic selection for growth traits and early selection of superior progeny in Castanopsis hystrix. Scientia Silvae Sinicae, 2024, 60 (12): 83- 91.
|
|
张苗苗, 王军辉, 卢 楠, 等. 林木全基因组选择研究现状和应用. 世界林业研究, 2021, 34 (4): 26- 32.
|
|
Zhang M M, Wang J H, Lu N, et al. Research progress and application of whole genome selection in forest tree breeding. World Forestry Research, 2021, 34 (4): 26- 32.
|
|
朱 嵊, 黄敏仁. 基因组选择在林木遗传育种研究中的进展与展望. 林业科学, 2020, 56 (11): 176- 186.
|
|
Zhu S, Huang M R. Recent advances and prospect of the genomic selection in forest genetics and tree breeding. Scientia Silvae Sinicae, 2020, 56 (11): 176- 186.
|
|
Alemu A, Åstrand J, Montesinos-López O A, et al. Genomic selection in plant breeding: key factors shaping two decades of progress. Molecular Plant, 2024, 17 (4): 552- 578.
doi: 10.1016/j.molp.2024.03.007
|
|
Alves F C, Balmant K M, Resende M F R, et al. Accelerating forest tree breeding by integrating genomic selection and greenhouse phenotyping. The Plant Genome, 2020, 13 (3): e20048.
doi: 10.1002/tpg2.20048
|
|
Boopathi N M. 2020. Genetic mapping and marker assisted selection. Singapore: Springer.
|
|
Crossa J, Pérez-Rodríguez P, Cuevas J, et al. Genomic selection in plant breeding: methods, models, and perspectives. Trends in Plant Science, 2017, 22 (11): 961- 975.
doi: 10.1016/j.tplants.2017.08.011
|
|
Danecek P, Auton A, Abecasis G, et al. The variant call format and VCFtools. Bioinformatics, 2011, 27 (15): 2156- 2158.
doi: 10.1093/bioinformatics/btr330
|
|
Desta Z A, Ortiz R. Genomic selection: genome-wide prediction in plant improvement. Trends in Plant Science, 2014, 19 (9): 592- 601.
doi: 10.1016/j.tplants.2014.05.006
|
|
Duarte D, Jurcic E J, Dutour J, et al. Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population. Frontiers in Plant Science, 2024, 15, 1462285.
doi: 10.3389/fpls.2024.1462285
|
|
Grattapaglia D, Resende M D V. Genomic selection in forest tree breeding. Tree Genetics & Genomes, 2011, 7 (2): 241- 255.
|
|
Grattapaglia D. Twelve years into genomic selection in forest trees: climbing the slope of enlightenment of marker assisted tree breeding. Forests, 2022, 13 (10): 1554.
doi: 10.3390/f13101554
|
|
Habier D, Fernando R L, Dekkers J C M. The impact of genetic relationship information on genome-assisted breeding values. Genetics, 2007, 177 (4): 2389- 2397.
doi: 10.1534/genetics.107.081190
|
|
Habier D, Fernando R L, Kizilkaya K, et al. Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics, 2011, 12 (1): 186.
doi: 10.1186/1471-2105-12-186
|
|
Li Z T, Sillanpää M J. Dynamic quantitative trait locus analysis of plant phenomic data. Trends in Plant Science, 2015, 20 (12): 822- 833.
doi: 10.1016/j.tplants.2015.08.012
|
|
McLean D, Apiolaza L, Paget M, et al. Simulating deployment of genetic gain in a radiata pine breeding program with genomic selection. Tree Genetics & Genomes, 2023, 19 (4): 33.
|
|
Meuwissen T H E, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157 (4): 1819- 1829.
doi: 10.1093/genetics/157.4.1819
|
|
Muranty H, Jorge V, Bastien C, et al. Potential for marker-assisted selection for forest tree breeding: lessons from 20 years of MAS in crops. Tree Genetics & Genomes, 2014, 10 (6): 1491- 1510.
|
|
Porth I, Klápště J, McKown A. 2024. The poplar genome. Cham: Springer International Publishing.
|
|
Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 2007, 81 (3): 559- 575.
doi: 10.1086/519795
|
|
Simiqueli G F, Resende R T, Takahashi E K, et al. Realized genomic selection across generations in a reciprocal recurrent selection breeding program of Eucalyptus hybrids. Frontiers in Plant Science, 2023, 14, 1252504.
doi: 10.3389/fpls.2023.1252504
|
|
Sun M Y, Zhang M Y, Kumar S, et al. Genomic selection of eight fruit traits in pear. Horticultural Plant Journal, 2024, 10 (2): 318- 326.
doi: 10.1016/j.hpj.2023.04.008
|
|
VanRaden P M. Efficient methods to compute genomic predictions. Journal of Dairy Science, 2008, 91 (11): 4414- 4423.
doi: 10.3168/jds.2007-0980
|
|
Varshney R K, Roorkiwal M, Sorrells M E. 2017. Genomic selection for crop improvement. Cham: Springer International Publishing.
|
|
Wang Q, Jiang S, Li T, et al. G2P provides an integrative environment for multi-model genomic selection analysis to improve genotype-to-phenotype prediction. Frontiers in Plant Science, 2023, 14, 1207139.
doi: 10.3389/fpls.2023.1207139
|
|
Wei S Y, Yang G, Yang Y H, et al. Time-sequential detection of quantitative trait loci and candidate genes underlying the dynamic growth of Salix suchowensis. Tree Physiology, 2022, 42 (4): 877- 890.
doi: 10.1093/treephys/tpab138
|
|
Wickham H. ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics, 2011, 3 (2): 180- 185.
doi: 10.1002/wics.147
|
|
Wu R L, Ma C X, Yang M C K, et al. Quantitative trait loci for growth trajectories in Populus. Genetical Research, 2003, 81 (1): 51- 64.
doi: 10.1017/S0016672302005980
|
|
Xia H, Hao Z Y, Shen Y F, et al. Genome-wide association study of multiyear dynamic growth traits in hybrid Liriodendron identifies robust genetic loci associated with growth trajectories. The Plant Journal, 2023, 115 (6): 1544- 1563.
doi: 10.1111/tpj.16337
|
|
Xue L J, Wu H T, Chen Y N, et al. Evidences for a role of two Y-specific genes in sex determination in Populus deltoides. Nature Communications, 2020, 11 (1): 5893.
doi: 10.1038/s41467-020-19559-2
|
|
Yang J, Lee S H, Goddard M E, et al. GCTA: a tool for genome-wide complex trait analysis. American Journal of Human Genetics, 2011, 88 (1): 76- 82.
doi: 10.1016/j.ajhg.2010.11.011
|
|
Yin L L, Zhang H H, Tang Z S, et al. 2021. rMVP: a memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genomics, Proteomics & Bioinformatics, 19(4): 619–628.
|