林业科学 ›› 2025, Vol. 61 ›› Issue (5): 46-60.doi: 10.11707/j.1001-7488.LYKX20240239
孙英杰1,张德楠1,沈育伊2,徐广平1,*(),曹杨3,黄科朝1,陈运霜4,毛馨月5,滕秋梅1,吕仕洪1,褚俊智6
收稿日期:
2024-04-28
出版日期:
2025-05-20
发布日期:
2025-05-24
通讯作者:
徐广平
E-mail:xugpgx@163.com
基金资助:
Yingjie Sun1,Denan Zhang1,Yuyi Shen2,Guangping Xu1,*(),Yang Cao3,Kechao Huang1,Yunshuang Chen4,Xinyue Mao5,Qiumei Teng1,Shihong Lü1,Junzhi Chu6
Received:
2024-04-28
Online:
2025-05-20
Published:
2025-05-24
Contact:
Guangping Xu
E-mail:xugpgx@163.com
摘要:
目的: 探究中亚热带桉树人工林土壤微生物和酶活性对氮沉降增加的响应特征,为深入研究全球变化背景下氮沉降对桉树森林生态系统的影响提供科学依据。方法: 于2018年建立桉树人工林模拟氮沉降定位试验,设置对照CK(0 kg·hm?2a?1)、低氮LN(50 kg·hm?2a?1)、中氮MN(100 kg·hm?2a?1)和高氮HN(150 kg·hm?2a?1)4个处理,模拟氮沉降5年后,分析土壤理化性质、微生物群落结构、微生物多样性及土壤酶活性。结果: 1) 与对照相比,氮沉降显著增加了土壤阳离子交换量、黏粒、有机碳、全氮、硝态氮、溶解有机氮和微生物生物量氮的含量。随着氮沉降水平的增加,全磷、微生物生物量磷、铵态氮和砂粒含量表现为先增大后减小的趋势。粉粒含量呈现先减小后略增加的趋势,小于对照。2) 氮沉降提高了土壤微生物总磷脂脂肪酸含量。低氮和中氮沉降提高了土壤细菌、真菌、革兰氏阳性菌含量、放线菌、丛枝菌根真菌和革兰氏阴性菌量,促进了土壤β-葡萄糖苷酶、纤维素酶、过氧化氢酶、多酚氧化酶、β-N-乙酰氨基葡萄糖苷酶、脲酶和酸性磷酸酶的活性,但在高氮沉降下则趋于减小。3) 相关性和冗余分析结果表明,土壤阳离子交换量、微生物生物量氮、粉粒、全氮、溶解有机氮和全磷含量是影响微生物群落结构和酶活性变化的关键环境因子。结论: 5年短期模拟氮沉降改善了桉树人工林土壤理化性质,改变了土壤微生物群落结构和提高了土壤酶活性,其中低氮和中氮沉降对土壤理化性质、微生物群落结构和酶活性表现出促进作用,高氮沉降则表现出一定的抑制作用。
中图分类号:
孙英杰,张德楠,沈育伊,徐广平,曹杨,黄科朝,陈运霜,毛馨月,滕秋梅,吕仕洪,褚俊智. 模拟氮沉降对中亚热带桉树人工林土壤微生物群落结构及酶活性的影响[J]. 林业科学, 2025, 61(5): 46-60.
Yingjie Sun,Denan Zhang,Yuyi Shen,Guangping Xu,Yang Cao,Kechao Huang,Yunshuang Chen,Xinyue Mao,Qiumei Teng,Shihong Lü,Junzhi Chu. Effects of Simulated Nitrogen Deposition on Soil Microbial Community Structure and Enzyme Activities in Eucalyptus Plantations in Mid-subtropical Region[J]. Scientia Silvae Sinicae, 2025, 61(5): 46-60.
表1
试验样地0~30 cm土层土壤理化性质①"
理化性质指标 Physico-chemical properties | 初始土壤 Initial soil (2018) | 5年氮沉降试验后土壤 Five-year nitrogen deposition experiment on soil (2023) | |||
CK | LN | MM | HN | ||
pH | 5.33 | 5.31 | 5.18 | 4.99 | 4.67 |
BD/( g·cm?3) | 1.71 | 1.75 | 1.63 | 1.52 | 1.42 |
CEC/ (mol·kg?1) | 6.97 | 7.22 | 8.10 | 8.78 | 7.69 |
SOC /(g·kg?1) | 5.65 | 5.59 | 6.05 | 6.56 | 6.32 |
TN /(g·kg?1) | 0.59 | 0.65 | 0.76 | 0.87 | 1.03 |
TP /(g·kg?1) | 0.29 | 0.37 | 0.45 | 0.31 | 0.26 |
TK /(g·kg?1) | 4.93 | 4.78 | 5.13 | 5.49 | 5.19 |
AN /(mg·kg?1) | 55.42 | 55.23 | 58.97 | 62.08 | 64.13 |
AP /(mg·kg?1) | 1.32 | 1.51 | 1.60 | 1.47 | 1.30 |
AK /(mg·kg?1) | 29.34 | 30.31 | 31.36 | 32.55 | 31.66 |
表2
不同氮沉降处理下土壤理化性质和微生物生物量氮磷变化①"
土层 Soil layer/cm | 处理 Treatment | CEC/ (mol·kg?1) | CL (%) | SI (%) | SA (%) | SOC/ (g·kg?1) | TP/ (g·kg?1) | TN/ (g·kg?1) | NO3--N/ (mg·kg?1) | NH4 +-N/ (mg·kg?1) | DON/ (mg·kg?1) | MBN/ (mg·kg?1) | MBP/ (mg·kg?1) |
0~10 | CK | 10.39± 0.07Da | 22.11± 0.05Ca | 53.99± 0.11Aa | 23.90± 0.08Bc | 7.38± 0.02Ca | 0.53± 0.01Ba | 1.04± 0.01Ba | 17.31± 0.10Ba | 60.81± 0.10Ba | 20.57± 0.17Ba | 59.62± 0.24Aa | 43.29± 0.12Aa |
LN | 11.05± 0.09Ba | 24.16± 0.18Ba | 51.35± 0.18Bb | 24.50± 0.08Ac | 7.59± 0.07Ba | 0.65± 0.01Aa | 1.13± 0.01Ba | 19.38± 0.09Ba | 60.89± 0.16Ba | 21.65± 0.17Ba | 61.51± 0.07Aa | 47.03± 0.34Aa | |
MN | 11.78± 0.12Aa | 25.84± 0.15Aa | 50.08± 0.24Cb | 24.08± 0.11Bc | 8.02± 0.04Aa | 0.42± 0.01Ca | 1.30± 0.01Aa | 21.66± 0.10Aa | 64.18± 0.23Aa | 24.67± 0.16Aa | 65.05± 0.32Aa | 41.26± 0.22Aa | |
HN | 10.74± 0.08Ca | 25.53± 0.16Aa | 51.75± 0.16Bb | 22.72± 0.12Cc | 7.69± 0.06Aa | 0.37± 0.01Da | 1.46± 0.01Aa | 19.01± 0.05Aa | 59.86± 0.39Ca | 23.56± 0.07Aa | 60.25± 0.06Aa | 38.48± 0.23Aa | |
10~20 | CK | 7.13± 0.05Dc | 18.21± 0.04Bb | 51.57± 0.09Bb | 30.22± 0.05Cb | 6.17± 0.02Db | 0.31± 0.01Bb | 0.59± 0.02Cb | 8.53± 0.17Cb | 31.73± 0.14Cb | 14.20± 0.22Db | 40.29± 0.04Db | 19.65± 0.13Bb |
LN | 8.31± 0.07ABb | 19.27± 0.12Ab | 49.06± 0.25Cc | 31.68± 0.17Ab | 6.68± 0.04Cb | 0.38± 0.01Ab | 0.70± 0.01Bb | 10.28± 0.06Bb | 32.78± 0.11Bb | 15.39± 0.18Cb | 42.25± 0.11Bb | 22.24± 0.13Ab | |
MN | 9.20± 0.09Ab | 14.03± 0.25Cc | 55.26± 0.28Aa | 30.71± 0.07Bb | 7.28± 0.05Ab | 0.20± 0.01Dc | 0.55± 0.01Cc | 12.55± 0.17Ab | 34.50± 0.24Ab | 17.83± 0.15Ab | 45.04± 0.18Ab | 17.31± 0.09Cb | |
HN | 8.03± 0.06ACb | 19.14± 0.06Ab | 51.39± 0.20Bb | 29.47± 0.15Db | 7.05± 0.04Bb | 0.26± 0.01Cb | 0.92± 0.01Ab | 7.14± 0.06Dc | 30.76± 0.18Db | 16.92± 0.12Bb | 41.30± 0.13Cb | 16.08± 0.08Db | |
20~30 | CK | 4.14± 0.05Cb | 12.01± 0.06Dc | 54.31± 0.19Aa | 33.68± 0.15Ba | 3.22± 0.04Dc | 0.26± 0.01Bc | 0.33± 0.02Dc | 6.49± 0.18Cc | 21.65± 0.10Cc | 7.20± 0.09Dc | 19.14± 0.29Dc | 14.84± 0.07Bc |
LN | 4.93± 0.10ABc | 12.50± 0.18Cc | 52.64± 0.10Ba | 34.86± 0.18Aa | 3.89± 0.06Cc | 0.33± 0.01Ac | 0.44± 0.01Cc | 7.88± 0.15Bc | 22.80± 0.09Bc | 8.33± 0.16Bc | 21.68± 0.11Bc | 16.92± 0.12Ac | |
MN | 5.37± 0.12Ac | 20.26± 0.06Ab | 45.75± 0.15Cc | 34.00± 0.15Ba | 4.39± 0.06Ac | 0.31± 0.01Ab | 0.75± 0.01Ab | 9.65± 0.16Ac | 24.91± 0.11Ac | 10.19± 0.08Ac | 24.75± 0.19Ac | 12.20± 0.10Cc | |
HN | 4.31± 0.06Cc | 13.64± 0.15Bc | 53.79± 0.25Aa | 32.57± 0.11Ca | 4.23± 0.03Bc | 0.15± 0.01Cc | 0.71± 0.02Bc | 10.00± 0.06Ab | 20.22± 0.18Dc | 7.61± 0.13Cc | 20.10± 0.23Cc | 12.09± 0.06Cc | |
0~30 均值 0~30 Mean | CK | 7.22 | 17.44 | 53.29 | 29.27 | 5.59 | 0.37 | 0.65 | 10.78 | 38.06 | 13.99 | 39.68 | 25.93 |
LN | 8.10 | 18.64 | 51.02 | 30.34 | 6.05 | 0.45 | 0.76 | 12.74 | 40.10 | 15.56 | 43.30 | 29.47 | |
MN | 8.78 | 20.05 | 50.36 | 29.60 | 6.56 | 0.31 | 0.87 | 14.51 | 41.01 | 17.44 | 44.68 | 23.97 | |
HN | 7.69 | 19.44 | 52.31 | 28.25 | 6.32 | 0.26 | 1.03 | 12.05 | 36.95 | 16.03 | 40.55 | 22.21 |
图1
不同氮沉降处理对土壤微生物PLFAs量的影响 CK:对照Control;LN:低氮处理Low nitrogen treatment;MN:中氮处理Medium nitrogen treatment;HN:高氮处理High nitrogen treatment;PLFA:磷脂脂肪酸Phospholipid fatty acid. 不同大小写字母分别表示氮沉降处理和土层间的差异显著 (P< 0.05)。Different uppercase and lowercase letters indicate significant differences between nitrogen deposition treatments and soil layers(P< 0.05)."
表3
土壤总磷脂脂肪酸、革兰氏阳性菌/阴性菌、真菌/细菌及微生物群落多样性指数的变化①"
土层 Soil layer/cm | 处理 Treatment | TPLFAs/(nmol·g?1) | G+/G? | F/B | H' | D |
0~10 | CK | 42.751±0.236Ca | 1.122±0.008Bb | 0.390±0.000Ba | 1.635±0.005Ca | 0.701±0.004Ca |
LN | 47.615±0.215Ba | 1.150±0.018Ba | 0.348±0.005Ca | 1.695±0.009Ba | 0.723±0.004Ba | |
MN | 55.983±0.665Aa | 1.583±0.025Aa | 0.488±0.009Aa | 1.770±0.007Aa | 0.786±0.004Aa | |
HN | 43.248±0.058Ca | 1.623±0.030Ab | 0.383±0.006Ba | 1.575±0.0124Da | 0.695±0.003Ca | |
10~20 | CK | 23.688±0.127Db | 1.240±0.011Ca | 0.335±0.005Cb | 1.546±0.003Cb | 0.638±0.006Cb |
LN | 28.168±0.289Bb | 1.070±0.007Cb | 0.360±0.006Ba | 1.600±0.005Bb | 0.660±0.007Bb | |
MN | 36.623±0.422Ab | 1.480±0.023Bb | 0.395±0.005Ac | 1.627±0.008Ab | 0.709±0.002Ab | |
HN | 25.723±0.170Cb | 3.701±0.138Aa | 0.285±0.006Db | 1.505±0.003Db | 0.603±0.003Db | |
20~30 | CK | 17.730±0.180Cc | 1.180±0.031Bab | 0.313±0.006Cc | 1.411±0.004Cc | 0.526±0.012Cc |
LN | 20.460±0.123Ac | 1.155±0.023Ba | 0.365±0.013Ba | 1.477±0.011Bc | 0.578±0.006Bc | |
MN | 24.138±0.768Ac | 1.640±0.041Aa | 0.425±0.006Ab | 1.504±0.003Ac | 0.616±0.003Ac | |
HN | 19.530±0.171Bc | 1.105±0.010Bc | 0.290±0.007Cb | 1.373±0.010Dc | 0.506±0.003Cc |
图3
氮沉降处理下土壤微生物群落结构的主成分分析 PC1:第一主成分Principal component 1;PC2:第二主成分Principal component 2;CK:对照Control;LN:低氮Low nitrogen treatment;MN:中氮Medium nitrogen treatment;HN:高氮High nitrogen treatment;B:细菌Bacteria;F:真菌Fungi;ACT:放线菌Actinomycete;AMF:丛枝菌根真菌Arbuscular mycorrhizal fungi;G+:革兰氏阳性菌Gram-positive bacteria;G-:革兰氏阴性菌Gram-negative bacteria."
图4
土壤微生物PLFAs和土壤酶活性与土壤环境因子间的相关关系 SWC:土壤含水量Soil water content;CEC:阳离子交换量Cation exchange capacity;CL:黏粒Clay;SI:粉粒Silt;SA:砂粒Sand;SOC:土壤有机碳Soil organic carbon;TN:全氮Total nitrogen;TP:全磷 Total phosphorus ;NO3--N:硝态氮Nitrate -N; NH4+-N:铵态氮Ammonium N;DON:溶解性有机氮Dissolved organic nitrogen;MBN:微生物生物量氮Microbial biomass nitrogen;MBP:微生物生物量磷Microbial biomass phosphorus;B:细菌Bacteria;F:真菌Fungi;ACT:放线菌Actinomycete;AMF:丛枝菌根真菌Arbuscular mycorrhizal fungi;G+:革兰氏阳性菌Gram-positive bacteria;G−:革兰氏阴性菌Gram-negative bacteria;BG:β-葡萄糖苷酶 β-glucosidase;CBH:纤维素酶 Cellulase;PEO:过氧化氢酶Catalase;PHO:多酚氧化酶Polyphenol oxidase;NAG:β-N-乙酰氨基葡萄糖苷酶β-N-acetylglucosaminidase; UR:脲酶 Urease;ACP:酸性磷酸酶 Acid phosphatase.红色表示2个变量呈正相关,蓝色表示变量呈负相关,色彩越深表示变量相关性越大,*表示不同因子间在P<0.05水平上呈现显著相关,**和***分别表示不同因子间在P<0.01和P<0.001水平上呈现极显著相关. Red indicates a positive correlation between two variables, blue indicates a negative correlation, darker color indicates greater variable correlation, * indicates significant correlation between different factors at the P<0.05 level, ** and *** indicate highly significant correlation between different factors at P<0.01 and P<0.001 level, respectively."
图5
土壤微生物PLFAs和土壤酶活性与土壤环境因子间的冗余分析 SWC:土壤含水量Soil water content;CEC:阳离子交换量Cation exchange capacity;CL:黏粒Clay;SI:粉粒Silt;SOC:土壤有机碳Soil organic carbon;TN:全氮Total nitrogen;TP:全磷 Total phosphorus;NO3--N:硝态氮Nitrate -N;NH4+-N:铵态氮Ammonium N;DON:溶解性有机氮Dissolved organic nitrogen;MBN:微生物生物量氮Microbial biomass nitrogen;MBP:微生物生物量磷Microbial biomass phosphorus;B:细菌Bacteria;F:真菌Fungi;ACT:放线菌Actinomycete;AMF:丛枝菌根真菌Arbuscular mycorrhizal fungi;G+:革兰氏阳性菌Gram-positive bacteria;G−:革兰氏阴性菌Gram-negative bacteria;BG:β-葡萄糖苷酶 β-glucosidase;CBH:纤维素酶 Cellulase;PEO:过氧化氢酶Catalase;PHO:多酚氧化酶Polyphenol oxidase;NAG:β-N-乙酰氨基葡萄糖苷酶β-N-acetylglucosaminidase;UR:脲酶 Urease;ACP:酸性磷酸酶 Acid phosphatase.蓝色箭头线条表示响应变量,红色箭头线条表示解释变量.The blue arrow lines represent the response variables,the red arrow lines represent explanatory variables."
陈 林, 张佳宝, 赵炳梓, 等. 不同施氮水平下土壤的生化性质对干湿交替的响应. 土壤学报, 2013, 50 (4): 675- 683. | |
Chen L, Zhang J B, Zhao B Z, et al. Soil fertility and its response to drying-wetting alternation as affected by nitrogen fertilization rate. Acta Pedologica Sinica, 2013, 50 (4): 675- 683. | |
陈 天, 程瑞梅, 王丽君, 等. 氮添加对马尾松人工林土壤团聚体氮矿化及土壤酶活性的影响. 生态学报, 2023, 43 (16): 6528- 6538. | |
Chen T, Cheng R M, Wang L J, et al. Effects of nitrogen addition on the mineralization and enzymatic activities within soil aggregates in Pinus massoniana plantation. Acta Ecologica Sinica, 2023, 43 (16): 6528- 6538. | |
杜 锟, 张江勇, 林勇明, 等. 邓恩桉(Eucalyptus dunnii)人工幼龄林土壤酶活性对模拟硫、氮复合沉降的响应. 热带作物学报, 2015, 36 (3): 504- 509.
doi: 10.3969/j.issn.1000-2561.2015.03.010 |
|
Du K, Zhang J Y, Lin Y M, et al. Responses of soil enzymes activities to simulated sulfur and nitrogen complex depositions in a young Eucalyptus dunnii plantation. Chinese Journal of Tropical Crops, 2015, 36 (3): 504- 509.
doi: 10.3969/j.issn.1000-2561.2015.03.010 |
|
樊后保, 刘文飞, 徐 雷, 等. 杉木人工林土壤酶活性对氮沉降的响应. 林业科学, 2012, 48 (7): 8- 13.
doi: 10.11707/j.1001-7488.20120702 |
|
Fan H B, Liu W F, Xu L, et al. Impacts of nitrogen deposition on soil enzyme activities in a Chinese fir plantation. Scientia Silvae Sinicae, 2012, 48 (7): 8- 13.
doi: 10.11707/j.1001-7488.20120702 |
|
范珍珍, 王 鑫, 王 超, 等. 整合分析氮磷添加对土壤酶活性的影响. 应用生态学报, 2018, 29 (4): 1266- 1272. | |
Fan Z Z, Wang X, Wang C, et al. Effect of nitrogen and phosphorus addition on soil enzyme activities: a meta-analysis. Chinese Journal of Applied Ecology, 2018, 29 (4): 1266- 1272. | |
冯慧芳, 林婉奇, 薛 立. 氮磷添加和栽植密度对大叶相思林土壤微生物群落功能多样性的影响. 生态学报, 2021, 41 (6): 2305- 2314. | |
Feng H F, Lin W Q, Xue L. Interactive effects of nitrogen and phosphorus additions and different stand densities on soil microbial functional diversity of Acacia auriculiformis stands. Acta Ecologica Sinica, 2021, 41 (6): 2305- 2314. | |
付 伟, 武 慧, 赵爱花, 等. 陆地生态系统氮沉降的生态效应: 研究进展与展望. 植物生态学报, 2020, 44 (5): 475- 493.
doi: 10.17521/cjpe.2019.0163 |
|
Fu W, Wu H, Zhao A H, et al. Ecological impacts of nitrogen deposition on terrestrial ecosystems: research progresses and prospects. Chinese Journal of Plant Ecology, 2020, 44 (5): 475- 493.
doi: 10.17521/cjpe.2019.0163 |
|
高 艳, 马红亮, 高 人, 等. 模拟氮沉降对森林土壤酚类物质和可溶性糖含量的影响. 土壤, 2014, 46 (1): 41- 46. | |
Gao Y, Ma H L, Gao R, et al. Effects of simulated nitrogen deposition on phenolics and soluble sugar in forest soils. Soils, 2014, 46 (1): 41- 46. | |
顾峰雪, 黄 玫, 张远东, 等. 1961—2010年中国区域氮沉降时空格局模拟研究. 生态学报, 2016, 36 (12): 3591- 3600. | |
Gu F X, Huang M, Zhang Y D, et al. Modeling the temporal-spatial patterns of atmospheric nitrogen deposition in China during 1961—2010. Acta Ecologica Sinica, 2016, 36 (12): 3591- 3600. | |
郭 超, 王霖娇. 氮沉降对森林生态系统土壤微生物、酶活性以及细根生产与周转的影响研究进展. 生态学杂志, 2021, 40 (11): 3730- 3741. | |
Guo C, Wang L J. Effects of nitrogen deposition on soil microbes, enzyme activities, fine root production and turnover in forest ecosystems: a review. Chinese Journal of Ecology, 2021, 40 (11): 3730- 3741. | |
韩其飞, 李莹莹, 彭开兵, 等. 大气氮沉降对中亚草地生态系统净初级生产力的影响. 生态学报, 2021, 41 (21): 8545- 8555. | |
Han Q F, Li Y Y, Peng K B, et al. Effects of atmospheric nitrogen deposition on net primary productivity of grassland ecosystem in Central Asia. Acta Ecologica Sinica, 2021, 41 (21): 8545- 8555. | |
胡苑柳, 陈国茵, 陈静文, 等. 模拟酸沉降对南亚热带季风常绿阔叶林土壤微生物群落结构的长期影响. 植物生态学报, 2021, 45 (3): 298- 308.
doi: 10.17521/cjpe.2020.0217 |
|
Hu Y L, Chen G Y, Chen J W, et al. Effects of long-term simulated acid rain on soil microbial community structure in a monsoon evergreen broad-leaved forest in southern China. Chinese Journal of Plant Ecology, 2021, 45 (3): 298- 308.
doi: 10.17521/cjpe.2020.0217 |
|
黄静文, 刘 磊, 颜晓元, 等. 我国自然生态系统氮沉降临界负荷评估. 环境科学, 2023, 44 (6): 3321- 3328. | |
Huang J W, Liu L, Yan X Y, et al. Assessment of critical loads of nitrogen deposition in natural ecosystems of China. Environmental Science, 2023, 44 (6): 3321- 3328. | |
黄玉梓. 2009. 模拟氮沉降对杉木人工林碳库及其化学机理的影响. 福州: 福建农林大学. | |
Huang Y Z. 2009. Impacts of simulated nitrogen deposition on carbon pool and its chemical mechanism in the Chinese fir plantation. Fuzhou: Fujian Agriculture and Forestry University. [in Chinese] | |
贾 辉, 朱 敏, 余再鹏, 等. 亚热带树种在未成林造林地的凋落物量和周转与叶片性状的关系. 林业科学, 2024, 60 (1): 12- 18.
doi: 10.11707/j.1001-7488.LYKX20220391 |
|
Jia H, Zhu M, Yu Z P, et al. Relationship between litter production, litter turnover period and leaf traits of different tree species in subtropical young afforested land. Scientia Silvae Sinicae, 2024, 60 (1): 12- 18.
doi: 10.11707/j.1001-7488.LYKX20220391 |
|
李南洁, 曾清苹, 何丙辉, 等. 缙云山柑橘林土壤微生物磷脂脂肪酸(PLFAs)及酶活性的季节变化特征. 环境科学, 2017, 38 (1): 309- 317. | |
Li N J, Zeng Q P, He B H, et al. Seasonal variations of soil microbial PLFAs and soil enzyme activity under the citrus plantation in Mt. Jinyun, Chongqing. Environmental Science, 2017, 38 (1): 309- 317. | |
李睿达, 张 凯, 苏 丹, 等. 施氮对桉树人工林生长季土壤温室气体通量的影响. 生态学报, 2015, 35 (18): 5931- 5939. | |
Li R D, Zhang K, Su D, et al. Effects of nitrogen application on soil greenhouse gas fluxes in a Eucalyptus plantation during the growing season. Acta Ecologica Sinica, 2015, 35 (18): 5931- 5939. | |
李仁洪, 胡庭兴, 涂利华, 等. 华西雨屏区慈竹林凋落叶分解过程养分释放对模拟氮沉降的响应. 林业科学, 2010, 46 (8): 8- 14.
doi: 10.11707/j.1001-7488.20100802 |
|
Li R H, Hu T X, Tu L H, et al. Nutrient release in decomposition of leaf litter in Neosinocalamus affinis stands in response to simulated nitrogen deposition in rainy area of western China. Scientia Silvae Sinicae, 2010, 46 (8): 8- 14.
doi: 10.11707/j.1001-7488.20100802 |
|
李素新, 覃志杰, 刘泰瑞, 等. 模拟氮沉降对华北落叶松人工林土壤微生物碳和微生物氮的动态影响. 水土保持学报, 2020, 34 (1): 268- 274. | |
Li S X, Qin Z J, Liu T R, et al. Effects of simulated nitrogen deposition on soil microbial carbon and nitrogen dynamics of Larix principis-rupprechtii plantation. Journal of Soil and Water Conservation, 2020, 34 (1): 268- 274. | |
李元敬, 刘智蕾, 何兴元, 等. 丛枝菌根共生体中碳、氮代谢及其相互关系. 应用生态学报, 2014, 25 (3): 903- 910. | |
Li Y J, Liu Z L, He X Y, et al. Metabolism and interaction of C and N in the arbuscular mycorrhizal symbiosis. Chinese Journal of Applied Ecology, 2014, 25 (3): 903- 910. | |
刘彩霞, 焦如珍, 董玉红, 等. 模拟氮沉降对杉木林土壤氮循环相关微生物的影响. 林业科学, 2015, 51 (4): 96- 102. | |
Liu C X, Jiao R Z, Dong Y H, et al. Response of the N-cycling associated soil microorganism to simulated N deposition in a plantation of Cunninghamia lanceolata. Scientia Silvae Sinicae, 2015, 51 (4): 96- 102. | |
吕来新, 宋 蕾, 刘志理, 等. 红松人工林土壤酶活性与化学性质对氮添加的响应. 环境科学, 2020, 41 (4): 1960- 1967. | |
Lv L X, Song L, Liu Z L, et al. Response of soil enzyme activity and chemical properties to nitrogen addition in a Korean pine plantation. Environmental Science, 2020, 41 (4): 1960- 1967. | |
毛馨月, 沈育伊, 褚俊智, 等. 2025. 模拟氮沉降对中亚热带桉树人工林土壤有机碳组分及碳库管理指数的影响. 环境科学, 46(2): 1032-1045. | |
Mao X Y, Shen Y Y, Chu J Z, et al. 2025. Effects of simulated nitrogen deposition on soil organic carbon fractions and carbon pool management indicators in mid-subtropical Eucalyptus plantations. Environmental Science, 46(2): 1032-1045. [in Chinese] | |
孙 宇, 彭天驰, 李 顺, 等. 模拟氮沉降对湿性常绿阔叶次生林土壤碳氮组分和酶活性的影响. 水土保持学报, 2019, 33 (2): 235- 243, 250. | |
Sun Y, Peng T C, Li S, et al. Effects of simulated nitrogen deposition on soil carbon and nitrogen fractions and enzyme activity in moist evergreen broad-leaved secondary forest. Journal of Soil and Water Conservation, 2019, 33 (2): 235- 243, 250. | |
王 涵, 王 果, 黄颖颖, 等. pH变化对酸性土壤酶活性的影响. 生态环境, 2008, 17 (6): 2401- 2406. | |
Wang H, Wang G, Huang Y Y, et al. The effects of pH change on the activities of enzymes in an acid soil. Ecology and Environment Sciences, 2008, 17 (6): 2401- 2406. | |
吴金水, 林启美, 黄巧云, 等. 2006. 土壤微生物生物量测定方法及其应用. 北京: 气象出版社. | |
Wu J S, Lin Q M, Huang Q Y, et al. 2006. Methods for measuring soil microbial biomass and the applications. Beijing: Meteorological Press. [in Chinese] | |
肖春艳, 胡情情, 陈晓舒, 等. 基于文献计量的大气氮沉降研究进展. 生态学报, 2023, 43 (3): 1294- 1307. | |
Xiao C Y, Hu Q Q, Chen X S, et al. Research progress of atmospheric nitrogen deposition based on bibliometrics. Acta Ecologica Sinica, 2023, 43 (3): 1294- 1307. | |
谢海慧, 龚秦文, 吴承祯, 等. 氮、硫沉降对尾巨桉和杉木幼苗光合特性的影响. 应用与环境生物学报, 2015, 21 (3): 555- 562. | |
Xie H H, Gong Q W, Wu C Z, et al. Effects of nitrogen and sulfur deposition on photosynthetic characteristics of Eucalyptus urophylla×Eucalyptus grandis and Cunninghamia lanceolata seedlings under simulated experimental condition. Chinese Journal of Applied and Environmental Biology, 2015, 21 (3): 555- 562. | |
徐丹丹, 王浩斌, 濮毅涵. 氮沉降对人工林生长的滞后性影响的研究进展. 生态科学, 2022, 41 (2): 259- 264. | |
Xu D D, Wang H B, Pu Y H. Review on the lag effects of nitrogen deposition on plantations. Ecological Science, 2022, 41 (2): 259- 264. | |
徐广平, 沈育伊, 滕秋梅, 等. 2021. 桉树人工林生态环境效应研究. 南宁: 广西科学技术出版社. | |
Xu G P, Shen Y Y, Teng Q M, et al. 2021. Research on ecological environmental effect of Eucalyptus plantation. Nanning: Guangxi Science and Technology Press. [in Chinese] | |
杨灵芳, 孔东彦, 刁静文, 等. 氮沉降对陆地生态系统土壤有机碳含量影响的Meta分析. 环境科学, 2023, 44 (11): 6226- 6234. | |
Yang L F, Kong D Y, Diao J W, et al. Meta-analysis on the effects of nitrogen addition on soil organic carbon content in terrestrial ecosystems. Environmental Science, 2023, 44 (11): 6226- 6234. | |
袁颖红, 樊后保, 刘文飞, 等. 模拟氮沉降对杉木人工林(Cunninghamia lanceolata)土壤酶活性及微生物群落功能多样性的影响. 土壤, 2013, 45 (1): 120- 128.
doi: 10.3969/j.issn.0253-9829.2013.01.019 |
|
Yuan Y H, Fan H B, Liu W F, et al. Effects of simulated nitrogen deposition on soil enzyme activities and microbial community functional diversities in a Chinese fir plantation. Soils, 2013, 45 (1): 120- 128.
doi: 10.3969/j.issn.0253-9829.2013.01.019 |
|
曾清苹, 何丙辉, 李 源, 等. 模拟氮沉降对重庆缙云山马尾松林土壤呼吸和酶活性的季节性影响. 环境科学, 2016, 37 (10): 369- 375. | |
Zeng Q P, He B H, Li Y, et al. Seasonal effect of simulated nitrogen deposition on soil respiration and soil enzyme activity in masson pine forest in Mt. Jinyun, Chongqing, China. Environmental Science, 2016, 37 (10): 369- 375. | |
赵 超, 张文文, 阮宏华, 等. 模拟氮沉降对杨树人工林土壤微生物群落结构的影响. 生态学杂志, 2015, 34 (2): 360- 366. | |
Zhao C, Zhang W W, Ruan H H, et al. Effects of elevated nitrogen deposition on microbial community structure in poplar plantation. Chinese Journal of Ecology, 2015, 34 (2): 360- 366. | |
郑明朝, 符忆华, 卢娇华, 等. 2013—2022年南亚热带桉树人工林土壤质量评价及障碍因子演变特征. 桉树科技, 2024, 41 (2): 39- 47. | |
Zheng M C, Fu Y H, Lu J H, et al. Evaluation of soil quality and characterization of soil fertility obstacle factors in Eucalyptus plantations in south subtropical region from 2013 to 2022. Eucalypt Science & Technology, 2024, 41 (2): 39- 47. | |
郑裕雄, 曹际玲, 杨智杰, 等. 氮沉降对亚热带常绿阔叶天然林不同季节土壤微生物群落结构的影响. 土壤学报, 2018, 55 (6): 1534- 1544.
doi: 10.11766/trxb201804210081 |
|
Zheng Y X, Cao J L, Yang Z J, et al. Impacts of nitrogen deposition on soil microbial community structure in subtropical natural evergreen broad-leaved forest relative to season. Acta Pedologica Sinica, 2018, 55 (6): 1534- 1544.
doi: 10.11766/trxb201804210081 |
|
周嘉聪, 刘小飞, 郑 永, 等. 氮沉降对中亚热带米槠天然林微生物生物量及酶活性的影响. 生态学报, 2017, 37 (1): 127- 135. | |
Zhou J C, Liu X F, Zheng Y, et al. Effects of nitrogen deposition on soil microbial biomass and enzyme activities in Castanopsis carlesii natural forests in subtropical regions. Acta Ecologica Sinica, 2017, 37 (1): 127- 135. | |
周世兴, 邹 秤, 肖永翔, 等. 模拟氮沉降对华西雨屏区天然常绿阔叶林土壤微生物生物量碳和氮的影响. 应用生态学报, 2017, 28 (1): 12- 18. | |
Zhou S X, Zou C, Xiao Y X, et al. Effects of simulated nitrogen deposition on soil microbial biomass carbon and nitrogen in natural evergreen broad-leaved forest in the rainy area of west China. Chinese Journal of Applied Ecology, 2017, 28 (1): 12- 18. | |
Aber J, McDowell W, Nadelhoffer K, et al. Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. Bioscience, 1998, 48 (11): 921- 934.
doi: 10.2307/1313296 |
|
Allison S D, LeBauer D S, Ofrecio M R, et al. Low levels of nitrogen addition stimulate decomposition by boreal forest fungi. Soil Biology & Biochemistry, 2009, 41 (2): 293- 302. | |
Dise N B, Stevens J. Nitrogen deposition and reduction of terrestrial biodiversity: evidence from temperate grasslands. Science in China Series C: Life Sciences, 2005, 48 (2): 720- 728. | |
FAO. 2021. Global forest resources assessment 2020: Main report. Rome. | |
Frostegård A, Bååth E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 1996, 22 (1): 59- 65.
doi: 10.1007/BF00384433 |
|
Frostegård A, Tunlid A, Bååth E. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Applied and Environmental Microbiology, 1993, 59 (11): 3605- 3617.
doi: 10.1128/aem.59.11.3605-3617.1993 |
|
Högberg M N, Briones M J I, Keel S G, et al. Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytologist, 2010, 187 (2): 485- 493.
doi: 10.1111/j.1469-8137.2010.03274.x |
|
Insam H, Hutchinson T C, Reber H H. Effects of heavy metal stress on the metabolic quotient of the soil microflora. Soil Biology and Biochemistry, 1996, 28 (4/5): 691- 694. | |
Leff J W, Jones S E, Prober S M, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (35): 10967- 10972. | |
Li F L, Liu M, Li Z P, et al. Changes in soil microbial biomass and functional diversity with a nitrogen gradient in soil columns. Applied Soil Ecology, 2013, 64, 1- 6.
doi: 10.1016/j.apsoil.2012.10.006 |
|
Liu M X, Huang X, Song Y, et al. Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116 (16): 7760- 7765. | |
Liu X F, Yang, Z J, Lin C F, et al. Will nitrogen deposition mitigate warming-increased soil respiration in a young subtropical plantation?. Agricultural & Forest Meteorology, 2017, 246, 78- 85. | |
Liu X J, Zhang Y, Han W X, et al. Enhanced nitrogen deposition over China. Nature, 2013, 494, 459- 462.
doi: 10.1038/nature11917 |
|
Lu M, Yang Y H, Luo Y Q, et al. Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytologist, 2011, 189 (4): 1040- 1050.
doi: 10.1111/j.1469-8137.2010.03563.x |
|
Mo J M, Zhang W, Zhu W X, et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Global Change Biology, 2008, 14 (2): 403- 412.
doi: 10.1111/j.1365-2486.2007.01503.x |
|
Olsson P A. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiology Ecology, 1999, 29 (4): 303- 310.
doi: 10.1111/j.1574-6941.1999.tb00621.x |
|
Saiya-Cork K R, Sinsabaugh R L, Zak D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 2002, 34 (9): 1309- 1315. | |
Song W, Liu X Y, Hu C C, et al. Important contributions of non-fossil fuel nitrogen oxides emissions. Nature Communications, 2021, 12 (1): 243.
doi: 10.1038/s41467-020-20356-0 |
|
Song X Z, Zhou G M, Gu H H, et al. Management practices amplify the effects of N deposition on leaf litter decomposition of the Moso bamboo forest. Plant and Soil, 2015, 395 (1): 391- 400. | |
Wang C, Lu X K, Mori T, et al. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biology & Biochemistry, 2018, 121, 103- 112. | |
Wright R F, Rasmussen L. Introduction to the NITREX and EXMAN projects. Forest Ecology and Management, 1998, 101 (1/2/3): 1- 7. | |
Zak D R, Ringelberg D B, Pregitzer K S, et al. Soil microbial communities beneath Populus grandidentata grown under elevated atmospheric CO2. Ecological Applications, 1996, 6 (1): 257- 262.
doi: 10.2307/2269568 |
[1] | 白涵,郝珉辉,何怀江,张新娜,张春雨,赵秀海. 东北主要树种幼树叶片功能性状对模拟氮沉降的响应[J]. 林业科学, 2025, 61(5): 23-32. |
[2] | 张嘉嘉, 杜改改, 李莉, 刁松锋. 柿嫩枝扦插生根过程中生理变化特征[J]. 林业科学, 2025, 61(5): 98-107. |
[3] | 竹万宽,王志超,杜阿朋,许宇星. 广东湛江桉树人工林碳水通量季节格局及其环境生物控制[J]. 林业科学, 2024, 60(9): 18-32. |
[4] | 杨玲玉,石文广,罗志斌. 外生菌根真菌卷边桩菇促进宿主灰杨氮吸收利用特征[J]. 林业科学, 2024, 60(9): 69-79. |
[5] | 臧艳,向宇轩,刘娟,姜培坤,吴家森,李永夫. 氮、磷添加对亚热带毛竹林土壤水稳性团聚体及有机碳分布的影响[J]. 林业科学, 2024, 60(7): 8-16. |
[6] | 冯学瑞,马亚平,刘佳欣,陆晖,李运毛,曹兵. CO2浓度升高处理下宁夏枸杞糖代谢相关酶及基因表达分析[J]. 林业科学, 2024, 60(3): 10-21. |
[7] | 黄梦遥, 张润哲, 史策, 杨昊, 魏一凡, 张兆德, 祝琳, 宋连君, 聂立水, 王登芝. 不同施氮量和灌水水平下毛白杨林地土壤矿质氮动态[J]. 林业科学, 2023, 59(9): 45-54. |
[8] | 黄金莲,崔鸿侠,唐万鹏,胡琛,马致远,雷静品. 虫害对华山松人工林土壤酶活性及碳氮磷化学计量特征的影响[J]. 林业科学, 2023, 59(10): 128-137. |
[9] | 郝龙飞,刘婷岩,何永琴,张盛晰,赵媛. 菌根真菌调控灌木铁线莲根际土壤生态化学计量特征对氮沉降的应激响应[J]. 林业科学, 2022, 58(6): 151-160. |
[10] | 王娜,王佳茜,李国雷,李箐,朱琳,李田,刘文. 栓皮栎种子萌发出苗特征与生理生化变化[J]. 林业科学, 2022, 58(4): 1-10. |
[11] | 曹俐,王阳,杨蕴力,郑雨,王伟,刘桂丰,姜静. 转BpGLK裂叶桦生长变异、根际土壤酶活性及微生物群落组成[J]. 林业科学, 2022, 58(12): 21-31. |
[12] | 沈文静,张莉,刘来盘,方志翔,刘标. 转cry1Ac基因欧洲黑杨对赤子爱胜蚓生长发育和生殖的影响[J]. 林业科学, 2021, 57(12): 92-98. |
[13] | 梁艳,赵雪莹,白雪,刘德强,张妍,潘朋. PVP处理对黑皮油松外植体酚类物质形成及酶活性的影响[J]. 林业科学, 2021, 57(10): 166-174. |
[14] | 侯文军,邹明,李宝福,俞元春. 施用草甘膦对桉树人工林土壤理化性质的影响[J]. 林业科学, 2020, 56(8): 20-26. |
[15] | 竹万宽,许宇星,王志超,杜阿朋. 中国桉树人工林生物量估算系数及影响要素[J]. 林业科学, 2020, 56(5): 1-11. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||