林业科学 ›› 2024, Vol. 60 ›› Issue (7): 8-16.doi: 10.11707/j.1001-7488.LYKX20220803
收稿日期:
2022-11-18
出版日期:
2024-07-25
发布日期:
2024-08-19
通讯作者:
刘娟
E-mail:liujuan@zafu.edu.cn
基金资助:
Yan Zang,Yuxuan Xiang,Juan Liu*(),Peikun Jiang,Jiasen Wu,Yongfu Li
Received:
2022-11-18
Online:
2024-07-25
Published:
2024-08-19
Contact:
Juan Liu
E-mail:liujuan@zafu.edu.cn
摘要:
目的: 研究氮(N)、磷(P)添加对亚热带毛竹林土壤水稳性团聚体及土壤有机碳(SOC)分布的影响,揭示毛竹林SOC对N、P添加的响应特征,为N沉降背景下毛竹林固碳增汇提供数据支持。方法: 以NH4NO3为N源、NaH2PO4为P源,设置不同N、P添加量的4个处理:CK(0 kg·hm?2a?1 N+0 kg·hm?2a?1 P)、N(120 kg·hm?2a?1 N)、P(120 kg·hm?2a?1 P)和NP(120 kg·hm?2a?1 N+120 kg·hm?2a?1 P),3年后分析N、P添加对毛竹林土壤0~20、20~40 和40~60 cm土层不同粒级(>2、0.25~2、0. 053~0.25和<0.053 mm)团聚体含量、平均重量直径(MWD)、几何平均直径(GMD)及其SOC分布的影响。结果: 1) 各土层土壤水稳性团聚体均以大团聚体(>0.25 mm)为主,各处理大团聚体含量均随土层加深而降低,微团聚体(<0.25 mm)含量随土层加深而增加。在0~20 cm土层,N处理显著增加微团聚体含量,对大团聚体含量无显著影响;P处理对团聚体组成无显著影响;NP处理显著增加微团聚体含量、降低大团聚体含量;各处理对水稳性团聚体MWD和GMD均无显著影响。在20~40和40~60 cm土层,与CK相比,各处理均呈大团聚体含量降低、微团聚体含量增加的趋势。在20~40 cm土层,P处理显著降低水稳性团聚体MWD和GMD,N处理对水稳性团聚体MWD和GMD无显著影响,NP处理显著降低水稳性团聚体MWD,对水稳性团聚体GMD无显著影响;在40~60 cm土层,各处理均显著降低水稳性团聚体MWD和GMD。2) 与CK相比,N、P处理显著降低各土层SOC含量;NP处理对0~20和20~40 cm土层SOC含量均无显著影响,但显著降低40~60 cm土层SOC含量。3) N处理对0~20和40~60 cm土层土壤团聚体SOC贡献率均无显著影响,仅增加20~40 cm土层土壤大团聚体SOC贡献率、降低微团聚体SOC贡献率;NP处理显著降低各土层大团聚体SOC贡献率、增加微团聚体SOC贡献率;P处理对团聚体SOC贡献率的影响在20~40和40~60 cm土层与NP处理对其的影响趋势一致,对0~20 cm土层无显著影响。结论: N、P同时添加可在一定程度上减缓N或P单独添加引起的毛竹林SOC含量降低;P添加可促进SOC由大团聚体向微团聚体转移,增加SOC稳定性。在N素相对富集、P限制的亚热带森林土壤中,P添加可缓解N沉降引起的SOC含量降低,并在一定程度上促进SOC固定。
中图分类号:
臧艳,向宇轩,刘娟,姜培坤,吴家森,李永夫. 氮、磷添加对亚热带毛竹林土壤水稳性团聚体及有机碳分布的影响[J]. 林业科学, 2024, 60(7): 8-16.
Yan Zang,Yuxuan Xiang,Juan Liu,Peikun Jiang,Jiasen Wu,Yongfu Li. Effects of Nitrogen and Phosphorus Addition on Soil Water-Stable Aggregates and Organic Carbon Distribution in Moso Bamboo Forests in Subtropical China[J]. Scientia Silvae Sinicae, 2024, 60(7): 8-16.
表1
研究样地基本概况①"
土层 Soil layer | 处理 Treatments | pH | 有机碳含量 Soil organic carbon content/(g·kg?1) | 有效磷含量 Available phosphorous content/(mg·kg?1) | 全氮含量 Total nitrogen content/(g·kg?1) | 全磷含量 Total phosphorus content/(g·kg?1) |
0~20 cm | CK | 5.19±0.13Aa | 28.64±0.33Aa | 2.10±0.20Ca | 1.80±0.01Ca | 0.28±0.01Ba |
N | 3.66±0.05Cb | 23.76±0.77Ba | 2.43±0.17BCa | 1.66±0.03Da | 0.27±0.02Ba | |
P | 3.81±0.02Cb | 25.53±1.12Ba | 12.57±1.01ABa | 1.94±0.02Ba | 0.32±0.01Aa | |
NP | 4.32±0.11Bb | 29.32±0.91Aa | 11.29±0.63Aa | 2.33±0.03Aa | 0.35±0.02Aa | |
20~40 cm | CK | 4.58±0.13Aa | 19.11±0.27Ab | 0.65±0.07Cb | 1.12±0.01Ab | 0.26±0.01Aa |
N | 4.04±0.07Ba | 12.80±0.25Cb | 0.92±0.20Cb | 0.98±0.02Ab | 0.22±0.01Bb | |
P | 4.52±0.24ABa | 16.11±0.22Bb | 1.64±0.17Bb | 1.06±0.08Ab | 0.27±0.01Ab | |
NP | 4.73±0.12Aa | 18.11±0.57Ab | 4.21±0.17Ab | 1.08±0.06Ab | 0.28±0.00Ab | |
40~60 cm | CK | 4.81±0.46ABa | 16.06±0.31Ac | 0.65±0.13Bb | 1.02±0.05Ab | 0.24±0.00Bb |
N | 4.30±0.15ABb | 12.25±0.21Cb | 0.19±0.07Cc | 0.77±0.02Bc | 0.20±0.00Cb | |
P | 3.90±0.04Bb | 13.04±0.47Bc | 1.38±0.13Ab | 0.81±0.03Bc | 0.26±0.02Bb | |
NP | 4.71±0.03Ab | 11.58±0.20Cc | 0.78±0.17Bb | 1.07±0.04Ab | 0.31±0.00Ab |
表2
N、P添加对土壤水稳性团聚体分布的影响①"
土层 Soil layer | 处理 Treatment | 大团聚体Macro-aggregate | 微团聚体Micro-aggregate | |||||
>2 mm | 0.25~2 mm | 总和Sum | 0.053~0.25 mm | < 0.053 mm | 总和Sum | |||
0~20 cm | CK | 27.7±1.1ABa | 57.3±0.7Aa | 85.1±0.6Aa | 8.0±0.8Bc | 6.9±0.5Ac | 14.9±0.6Bc | |
N | 27.1±2.9Aab | 55.3±1.1Aa | 82.3±2.7Aab | 12.0±2.1ABc | 5.7±1.6Ab | 17.7±2.7Abc | ||
P | 35.1±6.5Aa | 52.3±6.7Aa | 87.3±0.5Aa | 7.4±0.2Bc | 5.3±0.4Ac | 12.7±0.5Bc | ||
NP | 20.5±0.7Ba | 58.9±2.3Aa | 79.4±1.6Ba | 13.8±1.7Ac | 6.7±0.1Ab | 20.6±1.6Ac | ||
20~40 cm | CK | 26.7±2.0Aa | 51.1±1.8ABb | 77.7±0.2Ab | 11.7±0.9Bb | 10.6±0.7Ab | 22.3±0.2Bb | |
N | 25.4±0.9ABa | 49.4±0.7Bb | 74.8±0.6ABb | 17.9±0.6Ab | 7.3±0.3Bb | 25.2±0.6ABb | ||
P | 21.7±1.4ABab | 51.3±1.6ABa | 73.0±1.2Bb | 16.3±1.2Ab | 10.7±1.2Ab | 27.0±1.2Ab | ||
NP | 20.6±1.4Ba | 54.5±0.7Aa | 75.1±0.8ABb | 17.7±0.7Ab | 7.2±0.3Bb | 24.9±0.8ABb | ||
40~60 cm | CK | 15.7±0.7Ab | 46.4±1.0Ac | 62.0±0.5Ac | 20.9±1.0Ca | 17.0±0.5Ca | 38.0±0.5Ca | |
N | 15.6±0.1Ab | 43.9±0.2ABc | 59.5±0.2Bc | 23.1±0.3BCa | 17.4±0.4Ca | 40.5±0.2Ba | ||
P | 13.4±0.4Bb | 41.5±0.6Ba | 54.9±0.8Cc | 26.1±0.6Aa | 19.0±0.5Ba | 45.1±0.8Aa | ||
NP | 10.8±0.4Cb | 43.3±0.7Bb | 54.0±0.7Cc | 24.6±0.5ABa | 21.3±0.3Aa | 46.0±0.7Aa |
表3
N、P添加和土层对土壤团聚体组成、稳定性及其有机碳含量影响的三因素方差分析(F)①"
项目 Item | MWD | GMD | SOC | 大团聚体含量Macro-aggregate content | 微团聚体含量 Micro-aggregate content | 大团聚体有机碳含量SOC content of macro-aggregate | 微团聚体有机碳含量SOC content of micro-aggregate | 大团聚体有机碳贡献率 SOC rate of macro-aggregate | 微团聚体有机碳贡献率SOC rate of micro-aggregate |
NA | 14.21*** | 15.11*** | 33.59*** | 15.11*** | 15.11*** | 42.74*** | 0.56 | 1.79 | 5.30* |
PA | 13.07*** | 20.96*** | 0.57 | 20.96*** | 20.96*** | 12.40** | 42.10*** | 9.83** | 37.67*** |
SL | 251.43*** | 573.01*** | 667.66*** | 573.01*** | 573.01*** | 731.24*** | 1.57 | 40.36*** | 154.75*** |
NA×PA | 2.07 | 0.01 | 106.73*** | 0.01 | 0.01 | 21.79*** | 83.92*** | 3.34 | 14.72*** |
NA×SL | 5.25* | 4.86* | 4.56* | 4.86* | 4.86* | 0.94 | 21.22*** | 1.63 | 4.79* |
PA×SL | 3.77* | 7.40** | 8.86*** | 7.40** | 7.40** | 3.74* | 17.45*** | 0.71 | 2.35 |
NA×PA×SL | 5.99*** | 5.60** | 9.14*** | 5.60** | 5.60** | 3.53* | 24.03*** | 2.69 | 11.87*** |
图1
N、P添加对水稳性团聚体MWD、GMD的影响 MWD: 平均重量直径 Mean weight diameter;GMD: 几何平均直径 Geometric mean diameter. 图中同一土层不同处理间不同大写字母表示差异显著(P<0.05),同一处理不同土层间不同小写字母表示差异显著(P<0.05)。Different capital letters mean significant differences among different treatments in the same soil layer at 0.05 level,different lower case letters mean significant differences among different soil layers in the same treatment at 0.05 level."
表4
N、P添加对土壤水稳性团聚体SOC含量的影响①"
土层 Soil layer | 处理Treatment | 大团聚体Macro-aggregate | 微团聚体Micro-aggregate | |||||
>2 mm | 0.25~2 mm | 总和Sum | 0.053~0.25 mm | <0.053 mm | 总和Sum | |||
0~20 cm | CK | 8.19±0.16ABa | 15.98±0.30Aa | 24.17±0.17Aa | 2.15±0.11Bb | 2.32±0.66Ba | 4.47±0.70Ba | |
N | 6.40±1.13BCa | 14.57±0.18Aa | 20.97±1.16Ba | 1.56±0.30Ba | 1.23±0.19Ba | 2.79±0.42Bb | ||
P | 9.99±0.10Aa | 11.86±0.50Ba | 21.85±0.57ABa | 2.17±0.11Bb | 1.51±0.09Bb | 3.68±0.08Bb | ||
NP | 5.23±0.39Ca | 14.70±0.77Aa | 19.93±0.60Ba | 4.91±0.55Aa | 4.48±0.22Aa | 9.39±0.71Aa | ||
20~40 cm | CK | 5.50±0.24Ab | 8.21±0.42Ab | 13.71±0.22Ab | 2.46±0.20BCb | 2.94±0.14Aa | 5.40±0.06Aa | |
N | 3.67±0.10Bb | 5.94±0.14Bb | 9.61±0.22Cb | 1.87±0.07Ca | 1.31C±0.04a | 3.18±0.10Cb | ||
P | 4.93±0.35Ab | 6.35±0.25Bb | 11.27±0.13Bb | 2.72±0.26ABa | 2.11±0.23Ba | 4.84±0.26Ba | ||
NP | 5.50±0.42Ab | 6.76±0.16Bb | 12.26±0.55Bb | 3.24±0.14Ab | 2.61±0.01Ab | 5.85±0.14Ab | ||
40~60 cm | CK | 3.27±0.08Ab | 6.93±0.26Ac | 10.19±0.18Ac | 3.47±0.20Aa | 2.40±0.04Aa | 5.87±0.19Aa | |
N | 3.31±0.03Ab | 4.64±0.19Bc | 7.95±0.22Bb | 2.62±0.02Ba | 1.67±0.03Ba | 4.30±0.01Ca | ||
P | 2.63±0.22Bb | 4.81±0.31Bc | 7.44±0.48BCc | 3.22±0.09Aa | 2.38±0.17Aa | 5.60±0.20Aa | ||
NP | 2.45±0.13Bb | 4.21±0.07Bc | 6.67±0.19Cc | 2.56±0.05Bb | 2.35±0.03Ac | 4.91±0.03Bc |
表5
N、P添加对土壤水稳性团聚体SOC贡献率的影响①"
土层 Soil layer | 处理Treatment | 大团聚体Macro-aggregate | 微团聚体Micro-aggregate | |||||
>2 mm | 0.25~2 mm | 总和Sum | 0.053~0.25 mm | < 0.053 mm | 总和Sum | |||
0~20 cm | CK | 28.7±0.9Ba | 57.0±0.4Ba | 85.7±0.5Aa | 7.7±0.3Bc | 7.8±2.2Bb | 15.5±2.3Ba | |
N | 26.7±4.1Ba | 61.4±1.9Aa | 88.1±2.2Aa | 6.7±1.5Bb | 5.2±0.9Bb | 11.9±2.2Bb | ||
P | 39.3±2.2Aa | 46.8±3.8Ba | 86.1±5.8Aa | 8.4±0.4Bc | 6.0±0.6Bc | 14.2±0.8Bb | ||
NP | 17.8±1.1Cab | 50.2±2.9Ba | 68.0±1.8Ba | 16.7±1.6Ab | 15.3±0.3Ab | 32.0±1.8Aa | ||
20~40 cm | CK | 28.8±1.6Ab | 42.9±1.6ABa | 71.7±0.2Bb | 12.8±0.9Cb | 15.4±0.9Aa | 29.0±0.2Ba | |
N | 28.7±0.6Aa | 46.4±0.2Aa | 75.1±0.7Ab | 14.6±0.4BCa | 10.3±0.4Ba | 25.4±0.7Cab | ||
P | 30.6±2.0Ab | 39.4±2.0Ba | 70.0±1.3Cb | 16.9±1.4ABb | 13.1±1.5ABa | 32.1±1.3Ab | ||
NP | 30.3±1.5Ab | 37.4±0.4Ba | 67.7±1.1Ca | 17.9±0.8Aab | 14.5±0.5Ab | 35.2±1.1Ab | ||
40~60 cm | CK | 20.4±0.8Bb | 43.1±1.1Ab | 63.5±0.7Ac | 21.6±1.0Aa | 15.0±0.3Aa | 36.6±0.7Ba | |
N | 27.0±0.3Aa | 37.9±1.0Bb | 60.6±0.7Ac | 21.4±0.2Aa | 13.7±0.5Aa | 39.4±0.7Ba | ||
P | 20.1±1.0Bb | 36.9±1.6Bb | 57.0±1.9Bc | 24.8±1.5Aa | 18.2±1.0Aa | 43.0±2.0Aa | ||
NP | 21.2±0.8ABa | 36.4±0.3Bb | 57.6±0.7Bb | 22.1±0.6Aa | 20.3±0.2Aa | 42.4±0.7Aa |
董莉丽, 陈益娥, 李晓华. 吴起县退耕还林对土壤团聚体水稳性和养分含量的影响. 林业科学, 2014, 50 (5): 140- 146. | |
Dong L L, Chen Y E, Li X H. Effects of the returning farmland to forests on content of water stable soil aggregates and the nutrients in Wuqi county. Scientia Silvae Sinicae, 2014, 50 (5): 140- 146. | |
段 娜, 李清河, 多普增, 等. 植物响应大气氮沉降研究进展. 世界林业研究, 2019, 32 (4): 6- 11. | |
Duan N, Li Q H, Duo P Z, et al. Plant response to atmospheric nitrogen deposition: a research review. World Forestry Research, 2019, 32 (4): 6- 11. | |
方华军, 程淑兰, 于贵瑞, 等. 大气氮沉降对森林土壤甲烷吸收和氧化亚氮排放的影响及其微生物学机制. 生态学报, 2014, 34 (17): 4799- 4806. | |
Fang H J, Cheng S L, Yu G R, et al. Microbial mechanisms responsible for the effects of atmospheric nitrogen deposition on methane uptake and nitrous oxide emission in forest soils: a review. Acta Ecologica Sinica, 2014, 34 (17): 4799- 4806. | |
郭虎波, 袁颖红, 吴建平, 等. 氮沉降对杉木人工林土壤团聚体及其有机碳分布的影响. 水土保持学报, 2013, 27 (4): 268- 272. | |
Guo H B, Yuan Y H, Wu J P, et al. Distribution of water-stable aggregates and organic carbon in response to simulated nitrogen deposition in a Chinese fir plantation. Journal of Soil and Water Conservation, 2013, 27 (4): 268- 272. | |
黄凯平, 李永夫, 宋成芳, 等. 氮沉降和施生物质炭对毛竹林土壤N2O通量的影响. 应用生态学报, 2021, 32 (9): 3079- 3088. | |
Huang K P, Li Y F, Song C F, et al. Effects of nitrogen deposition and biochar application on soil N2O fluxes in a moso bamboo plantation. Chinese Journal of Applied Ecology, 2021, 32 (9): 3079- 3088. | |
冷延慧, 汪景宽, 薛菁芳, 等. 连续施肥20年后棕壤团聚体分布和碳储量变化. 土壤通报, 2008, 39 (4): 743- 747.
doi: 10.3321/j.issn:0564-3945.2008.04.006 |
|
Leng Y H, Wang J K, Xue J F, et al. Soil aggregation and carbon storage in brown earth after 20-years of fertilization. Chinese Journal of Soil Science, 2008, 39 (4): 743- 747.
doi: 10.3321/j.issn:0564-3945.2008.04.006 |
|
李 明, 秦 洁, 红 雨, 等. 氮素添加对贝加尔针茅草原土壤团聚体碳、氮和磷生态化学计量学特征的影响. 草业学报, 2019, 28 (12): 29- 40.
doi: 10.11686/cyxb2019297 |
|
Li M, Qin J, Hong Y, et al. Effects of nitrogen addition on ecological stoichiometric characteristics of carbon, nitrogen and phosphorus in Stipa baicalensis grassland soil aggregates. Acta Prataculturae Sinica, 2019, 28 (12): 29- 40.
doi: 10.11686/cyxb2019297 |
|
李 霞, 田光明, 朱 军, 等. 不同磷肥用量对水稻土有机碳矿化和细菌群落多样性的影响. 土壤学报, 2014, 51 (2): 360- 372.
doi: 10.11766/trxb201307280354 |
|
Li X, Tian G M, Zhu J, et al. Effects of rate of phosphorus fertilizer on organic carbon mineralization and bacterial community diversity in paddy soil. Acta Pedologica Sinica, 2014, 51 (2): 360- 372.
doi: 10.11766/trxb201307280354 |
|
李应文. 2019. 氮磷添加对热带森林土壤有机碳主要过程的影响. 广州: 华南农业大学. | |
Li Y W. 2019. Effects of nitrogen and phosphorus addition on soil carbon processes in a tropical forest. Guangzhou: South China Agricultural University. [in Chinese] | |
刘红梅, 李睿颖, 高晶晶, 等. 保护性耕作对土壤团聚体及微生物学特性的影响研究进展. 生态环境学报, 2020, 29 (6): 1277- 1284. | |
Liu H M, Li R Y, Gao J J, et al. Research progress on the effects of conservation tillage on soil aggregates and microbiological characteristics. Ecology and Environmental Sciences, 2020, 29 (6): 1277- 1284. | |
刘 杰, 马艳婷, 王宪玲, 等. 渭北旱塬土地利用方式对土壤团聚体稳定性及其有机碳的影响. 环境科学, 2019, 40 (7): 3361- 3368. | |
Liu J, Ma Y T, Wang X L, et al. Impact of land use type on the stability and organic carbon content of soil aggregates in the Weibei dryland. Environmental Science, 2019, 40 (7): 3361- 3368. | |
龙凤玲, 李义勇, 方 熊, 等. 大气CO2浓度上升和氮添加对南亚热带模拟森林生态系统土壤碳稳定性的影响. 植物生态学报, 2014, 38 (10): 1053- 1063.
doi: 10.3724/SP.J.1258.2014.00099 |
|
Long F L, Li Y Y, Fang X, et al. Effects of elevated CO2 concentration and nitrogen addition on soil carbon stability in southern subtropical experimental forest ecosystems. Chinese Journal of Plant Ecology, 2014, 38 (10): 1053- 1063.
doi: 10.3724/SP.J.1258.2014.00099 |
|
龙杰琦, 苗淑杰, 李 娜, 等. 施用生物炭对黑土各组分有机质结构的影响. 植物营养与肥料学报, 2022, 28 (5): 775- 785.
doi: 10.11674/zwyf.2021290 |
|
Long J Q, Miao S J, Li N, et al. Effects of biochar application on the structural properties of organic matter fractions in Mollisols. Journal of Plant Nutrition and Fertilizers, 2022, 28 (5): 775- 785.
doi: 10.11674/zwyf.2021290 |
|
吕思扬, 宋思意, 黎蕴洁, 等. 氮添加和凋落物增减对华西雨屏区常绿阔叶林土壤团聚体及其碳氮的影响. 水土保持学报, 2022, 36 (1): 277- 287. | |
Lü S Y, Song S Y, Li Y J, et al. Effects of nitrogen and litter increase or decrease on soil aggregates and their C and N in evergreen broad-leaved forest in rain screen area of west China. Journal of Soil and Water Conservation, 2022, 36 (1): 277- 287. | |
潘嘉琛, 刘 超, 董 智, 等. 黄泛沙地不同林龄杨树人工林土壤团聚体及有机碳特征. 水土保持研究, 2022, 29 (3): 25- 30,37.
doi: 10.3969/j.issn.1005-3409.2022.3.stbcyj202203004 |
|
Pan J C, Liu C, Dong Z, et al. Distribution characteristics of soil aggregates and soil organic carbon in Populus artificial forest with different forest ages in Yellow River flood plain. Research of Soil and Water Conservation, 2022, 29 (3): 25- 30,37.
doi: 10.3969/j.issn.1005-3409.2022.3.stbcyj202203004 |
|
祁 瑜, Mulder J, 段 雷, 等. 模拟氮沉降对克氏针茅草原土壤有机碳的短期影响. 生态学报, 2015, 35 (4): 1104- 1113. | |
Qi Y, Mulder J, Duan L, et al. Short-term effects of simulating nitrogen deposition on soil organic carbon in a Stipa krylovii steppe. Acta Ecologica Sinica, 2015, 35 (4): 1104- 1113. | |
佘汉基, 郑欣颖, 薛 立, 等. 外源性氮和磷对尾叶桉凋落叶分解的影响. 安徽农业大学学报, 2017, 44 (3): 409- 414. | |
She H J, Zheng X Y, Xue L, et al. Effects of N and P additions on decomposition of leaf litter in a Eucalyptus urophylla stand. Journal of Anhui Agricultural University, 2017, 44 (3): 409- 414. | |
姚 旭, 景 航, 梁楚涛, 等. 人工油松林表层土壤团聚体活性有机碳含量对短期氮添加的响应. 生态学报, 2017, 37 (20): 6724- 6731. | |
Yao X, Jing H, Liang C T, et al. Response of labile organic carbon content in surface soil aggregates to short-term nitrogen addition in artificial Pinus tabulaeformis forests. Acta Ecologica Sinica, 2017, 37 (20): 6724- 6731. | |
张大鹏, 范少辉, 蔡春菊, 等. 川南不同退耕还竹林土壤团聚特征比较. 林业科学, 2013, 49 (1): 27- 32.
doi: 10.11707/j.1001-7488.20130105 |
|
Zhang D P, Fan S H, Cai C J, et al. Soil aggregates of returning farmland to different bamboo forests in Southern Sichuan Province. Scientia Silvae Sinicae, 2013, 49 (1): 27- 32.
doi: 10.11707/j.1001-7488.20130105 |
|
张秀兰, 王方超, 方向民, 等. 亚热带杉木林土壤有机碳及其活性组分对氮磷添加的响应. 应用生态学报, 2017, 28 (2): 449- 455. | |
Zhang X L, Wang F C, Fang X M, et al. Responses of soil organic carbon and its labile fractions to nitrogen and phosphorus additions in Cunninghamia lanceolata plantations in subtropical China. Chinese Journal of Applied Ecology, 2017, 28 (2): 449- 455. | |
Ackerman D, Millet D B, Chen X. Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochemical Cycles, 2019, 33 (1): 100- 107.
doi: 10.1029/2018GB005990 |
|
Batjes N H. 2014. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 65(1): 10−21. | |
Boot C M, Hall E K, Denef K, et al. Long-term reactive nitrogen loading alters soil carbon and microbial community properties in a subalpineforest ecosystem. Soil Biology and Biochemistry, 2016, 92, 211- 220.
doi: 10.1016/j.soilbio.2015.10.002 |
|
Chen H, Li D, Feng W, et al. Different responses of soil organic carbon fractions to additions of nitrogen. European Journal of Soil Science, 2018, 69 (6): 1098- 1104.
doi: 10.1111/ejss.12716 |
|
Dong X L, Hao Q Y, Li G T, et al. Contrast effect of long-term fertilization on SOC and SIC stocks and distribution in different soil particle-size fractions. Journal of Soils and Sediments, 2017, 17 (4): 1054- 1063.
doi: 10.1007/s11368-016-1615-y |
|
Du E Z, de Vries W, Han W X, et al. Imbalanced phosphorus and nitrogen deposition in China’s forests. Atmospheric Chemistry and Physics, 2016, 16 (13): 8571- 8579.
doi: 10.5194/acp-16-8571-2016 |
|
Jia Y L, Yu G R, He N P, et al. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Scientific Reports, 2014, 2014,4, 1- 7. | |
Li Y, Feng P. Bamboo resources in China based on the ninth national forest inventory data. World Bamboo Ratt, 2019, 17, 45- 48. | |
Ma S H, Chen G P, Tian D, et al. Effects of seven-year nitrogen and phosphorus additions on soil microbial community structures and residues in a tropical forest in Hainan Island, China. Geoderma, 2020, 361, 114034.
doi: 10.1016/j.geoderma.2019.114034 |
|
Mahowald N, Jickells T D, Baker A R, et al. Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochemical Cycles, 2008, 22 (4): GB4026. | |
Matsuoka-Uno C, Uno T, Tajima R, et al. Liming and phosphate application influence soil carbon and nitrogen mineralization differently in response to temperature regimes in allophanic andosols. Agriculture, 2022, 12 (2): 142.
doi: 10.3390/agriculture12020142 |
|
Mori T, Wachrinrat C, Staporn D, et al. Contrastive effects of inorganic phosphorus addition on soil microbial respiration and microbial biomass in tropical monoculture tree plantation soils in Thailand. Agriculture and Natural Resources, 2016, 50 (5): 327- 330.
doi: 10.1016/j.anres.2016.04.004 |
|
Nottingham A T, Turner B L, Stott A W, et al. Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils. Soil Biology and Biochemistry, 2015, 80, 26- 33.
doi: 10.1016/j.soilbio.2014.09.012 |
|
Peñuelas J, Poulter B, Sardans J, et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 2013, 4, 2934.
doi: 10.1038/ncomms3934 |
|
Ratliff T J, Fisk M C. Phosphatase activity is related to N availability but not P availability across hardwood forests in the northeastern United States. Soil Biology and Biochemistry, 2016, 94, 61- 69.
doi: 10.1016/j.soilbio.2015.11.009 |
|
Scharlemann J P, Tanner E V, Hiederer R, et al. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management, 2014, 5 (1): 81- 91.
doi: 10.4155/cmt.13.77 |
|
Schulte-Uebbing L F, Ros G H, de Vries W. Experimental evidence shows minor contribution of nitrogen deposition to global forest carbon sequestration. Global Change Biology, 2022, 28 (3): 899- 917.
doi: 10.1111/gcb.15960 |
|
Song W, Liu X Y, Hu C C, et al. Important contributions of non-fossil fuel nitrogen oxides emissions. Nature Communications, 2021, 12, 243.
doi: 10.1038/s41467-020-20356-0 |
|
Sullivan B W, Smith W K, Townsend A R, et al. Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111 (22): 8101- 8106. | |
Vitousek P M, Howarth R W. 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13(2): 87−115. | |
Vorontsova M S, Clark L G, Dransfield J, et al. 2017. World checklist of bamboos and rattans. Beijing: Science Press. | |
Wang R, Balkanski Y, Boucher O, et al. Significant contribution of combustion-related emissions to the atmospheric phosphorus budget. Nature Geoscience, 2015, 8, 48- 54.
doi: 10.1038/ngeo2324 |
|
Wen Z, Xu W, Li Q, et al. Changes of nitrogen deposition in China from 1980 to 2018. Environment International, 2020, 144, 106022.
doi: 10.1016/j.envint.2020.106022 |
|
Yu G R, Jia Y L, He N P, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 2019, 12, 424- 429.
doi: 10.1038/s41561-019-0352-4 |
|
Zak D R, Freedman Z B, Upchurch R A, et al. Anthropogenic N deposition increases soil organic matter accumulation without altering its biochemical composition. Global Change Biology, 2017, 23 (2): 933- 944.
doi: 10.1111/gcb.13480 |
|
Zhang L Q, Wei X R, Hao M D, et al. Changes in aggregate-associated organic carbon and nitrogen after 27 years of fertilization in a dryland alfalfa grassland on the Loess Plateau of China. Journal of Arid Land, 2015, 7 (4): 429- 437.
doi: 10.1007/s40333-015-0003-6 |
[1] | 杨阳, 王宝荣, 孙慧, 周媛媛, 乔江波, 宋怡, 张萍萍, 李自民, 王云强, 安韶山. 地球关键带土壤微生物介导有机碳转化研究进展[J]. 林业科学, 2024, 60(7): 165-174. |
[2] | 白雪娟, 翟国庆, 刘敬泽. 13C稳定同位素在陆地生态系统植物-微生物-土壤碳循环中的应用[J]. 林业科学, 2024, 60(7): 175-190. |
[3] | 张翱,李文婷,王天祥,武耀星,雷刚,漆良华. 毛竹林土壤易氧化有机碳区域分异及影响因素[J]. 林业科学, 2024, 60(6): 1-12. |
[4] | 沈琛琛,肖文发,朱建华,曾立雄,陈吉臻,黄志霖. 基于机器学习算法的华中天然林土壤有机碳特征与关键影响因子[J]. 林业科学, 2024, 60(3): 65-77. |
[5] | 韩新生,刘广全,许浩,董立国,郭永忠,安钰,万海霞,王月玲. 宁夏黄土区典型坡面表层土壤有机碳含量的空间变化特征及尺度效应[J]. 林业科学, 2024, 60(1): 19-31. |
[6] | 王一,栾军伟,陈琛,刘世荣. 毛竹林土壤呼吸及组分对氮磷添加的非对等响应[J]. 林业科学, 2023, 59(7): 54-64. |
[7] | 盖旭,张健,吕衡,黄志远,李巧玲,钟哲科,卞方圆,张小平. 雷竹林下养鸡对土壤活性有机碳及碳库管理指数的影响[J]. 林业科学, 2023, 59(12): 78-86. |
[8] | 游巍斌,李颖,周艳,何东进. 武夷山国家公园马尾松林改为茶园后影响表层土壤碳含量的林缘效应[J]. 林业科学, 2023, 59(10): 41-49. |
[9] | 郝龙飞,刘婷岩,何永琴,张盛晰,赵媛. 菌根真菌调控灌木铁线莲根际土壤生态化学计量特征对氮沉降的应激响应[J]. 林业科学, 2022, 58(6): 151-160. |
[10] | 郑翔,曹敏敏,纪小芳,方万力,刘胜龙,姜姜. 森林土壤氧化亚氮排放对磷添加响应的研究进展[J]. 林业科学, 2021, 57(6): 150-157. |
[11] | 傅洁,佘维维,白宇轩,张宇清,乔艳桂,秦树高. 氮水添加对油蒿群落2种优势植物叶片氮磷化学计量比的影响[J]. 林业科学, 2020, 56(5): 12-18. |
[12] | 胡海清,罗碧珍,罗斯生,魏书精,王振师,李小川,刘菲. 林火干扰对森林生态系统碳库的影响研究进展[J]. 林业科学, 2020, 56(4): 160-169. |
[13] | 胡宗达,刘世荣,刘兴良,罗明霞,胡璟,李亚非,余昊,欧定华,吴德勇. 川西亚高山3种天然次生林土壤有机碳氮组分特征[J]. 林业科学, 2020, 56(11): 1-11. |
[14] | 陶晨悦, 邵珊璐, 史文辉, 林琳, 汤祎磊, 应叶青. 氮沉降对干旱胁迫下毛竹实生苗生物量和保护酶活性的影响[J]. 林业科学, 2019, 55(9): 31-40. |
[15] | 贾荛祯, 王明, 王传华. 川金丝猴食源地衣长松萝生长、存活与生理学特征对模拟氮沉降的响应[J]. 林业科学, 2019, 55(7): 17-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||