黄 宇. 2014. 闽楠种子萌发与多胚苗研究. 福建林业科技, 41(3): 27-31. Huang Y. 2014. Study on the seed germination and multi-seedlings in Phoebe bournei (Hemsl.) Yang. Journal of Fujian Forestry Science and Technology, 41(3): 27-31. [in Chinese] 李 娟, 林键勇, 欧汉彪, 等. 2022. 闽楠种子对快速脱水的响应. 广西林业科学, 51(6): 823-827. Li J, Lin J Y, Ou H B, et al. 2022. Response of Phoebe bournei seeds to rapid dehydration. Guangxi Forestry Science, 51(6): 823-827. [in Chinese] 李 磊, 孟珍贵, 龙光强, 等. 2016. 植物顽拗性种子研究进展. 热带亚热带植物学报, 24(1): 106-118. Li L, Meng Z G, Long G Q, et al. 2016. Advances on recalcitrant seeds of plants. Journal of Tropical and Subtropical Botany, 24(1): 106-118. [in Chinese] 李文君, 沈永宝. 2009. ‘紫柄籽银桂’桂花种子脱水耐性与抗氧化系统的关系. 园艺学报, 36(2): 279-284. Li W J, Shen Y B. 2009. Changes on physiological characteristics of Osmanthus fragrans ‘Zibing Ziyingui’ seeds during dehydration. Chinese Journal of Horticulture, 36(2): 279-284. [in Chinese] 李雪云, 潘 萍, 臧 颢, 等. 2017. 闽楠天然次生林自然更新的影响因子研究. 林业科学研究, 30(5): 701-708. Li X Y, Pan P, Zang H, et al. 2017. Study on factors affecting natural regeneration of natural secondary Phoebe bournei forest. Forest Research, 30(5): 701-708. [in Chinese] 刘国贞, 吴福海, 宋华东, 等. 2007. 种子劣变机理的研究进展. 山东省农业管理干部学院学报, 23(1): 159-160. Liu G Z, Wu F H, Song H D, et al. 2007. Research progress on the mechanism of seed deterioration. Journal of Shandong Agricultural Management Cadre College, 23(1): 159-160. [in Chinese] 邱鹏飞, 何炎红, 田有亮. 2010. 赤霉素浸种对沙冬青种子萌发的影响. 现代农业科技, (3): 221-222, 225. Qiu P F, He Y H, Tian Y L. 2010. Effect of gibberellin on the seed germination of Ammopiptanthus mongolicus (Maxim.) Cheng f. Modern Agricultural Science and Technology, (3): 221-222, 225. [in Chinese] 申 婵, 钟芙蓉, 黄 玲, 等. 2019. 快速脱水对后熟黄连种子萌发及生理生化的影响. 中药材, 42(4): 720-724. Shen C, Zhong F R, Huang L, et al. 2019. Effect of rapid dehydration on germination and physiological and biochemical characteristics of the ripened seeds of Coptis chinensis. Journal of Chinese Medicinal Materials, 42(4): 720-724. [in Chinese] 宋松泉, 程红焱, 龙春林, 等. 2005. 种子生物学研究指南. 北京: 科学出版社, 90–92. Song S Q, Cheng H Y, Long C L, et al. 2005. Guidelines for seed biology research. Beijing: Science Press, 90–92. [in Chinese] 宋松泉, 傅家瑞. 1997. 黄皮种子脱水敏感性与脂质过氧化作用. 植物生理学报, 23(2): 163-168. Song S Q, Fu J R. 1997. Dehydration sensitivity and lipid peroxidation of yellow bark seeds. Acta Phytophysiologica Sinica, 23(2): 163-168. [in Chinese] 宋松泉, 刘 军, 唐翠芳, 等. 2022. 种子耐脱水性的生理及分子机制研究进展. 中国农业科学, 55(6): 1047-1063. Song S Q, Liu J, Tang C F, et al. 2022. Research progress on the physiology and its molecular mechanism of seed desiccation tolerance. Scientia Agricultural Sciences, 55(6): 1047-1063. [in Chinese] 吴大荣, 王伯荪. 2001. 濒危树种闽楠种子和幼苗生态学研究. 生态学报, 21(11): 1751–1760. Wu D R, Wang B S. 2001. Seed and seedling ecology of the endangered Phoebe bournei. Acta Ecologica Sinica, 21(11): 1751–1760. [in English] 颜世超, 高荣岐, 尹燕枰. 2005. 银杏含水量变化与活性氧清除酶活性的关系. 中国农学通报, 21(3): 207-210. Yan S C, Gao R Q, Yin Y P. 2005. The Relationship between moisture content of Ginkgo biloba seeds and activity of reactive-oxygen-scavenging enzymes. Chinese Agricultural Science Bulletin, 21(3): 207-210. [in Chinese] 张俊杰, 柴胜丰, 王满莲, 等. 2019. 珍稀濒危植物金丝李种子脱水耐性和贮藏特性. 广西植物, 39(2): 199–208. Zhang J J, Chai S F, Wang M L, et al. 2019. Dehydration tolerance and storage characteristics of seeds of rare and endangered plant Garcinia paucinervis. Guihaia. 39(2): 199–208. [in Chinese] 张丽君, 胡 炜, 莫木信, 等. 2016. 闽楠苗木繁育及造林技术. 中南林业调查规划, 35(2): 41-44. Zhang L J, Hu W, Mo M X, et al. 2016. Study on Seedling Breeding and Afforestation Technology of Phoebe bournei ( Hemsl.) Yang. Central South Forest Inventory and Planning, 35(2): 41-44. [in Chinese] 周佑勋, 段小平, 肖东玉. 2006. 樟树、檫树、闽楠种子的休眠和萌发特性. 中南林学院学报, 26(5): 79-84. Zhou Y X, Duan X P, Xiao D Y. 2006. Characteristics of seed dormancy and germination of three typical species in Lauraceae. Journal of Central South Forestry University, 26(5): 79-84. [in Chinese] Ali F, Qanmber G, Li F, et al. 2022. Updated role of aba in seed maturation, dormancy, and germination. Journal of Advanced Research, 35: 199-214. Braybrook S A, Harada J J, et al. 2008. LECs go crazy in embryo development. Trends in Plant Science, 13(12): 1360-1385 Dorone Y, Boeynaems S, Flores E, et al. 2021. A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation. The Cell, 184: 4284–4298. Greggains V, Finch-Savage W, Atherton N, et al. 2001. Viability loss and free radical processes during desiccation of recalcitrant Avicennia marina seeds. Seed Science Research, 11(3): 235-242. Han X, Zhang J H, Han S, et al. 2022. The chromosome-scale genome of Phoebe bournei reveals contrasting fates of terpene synthase (TPS)-a and TPS-b subfamilies. Plant Communications, 3(6): 100410. Hodges D, DeLong J, Forney C, et al. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4): 604–611. Lepiniec L, Devic M, Roscoe T J, et al. 2018. Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development. Plant Reproduction, 31(3): 291-307. Li D X, Li Y C, Qian J L, et al. 2021. Comparative transcriptome analysis revealed candidate genes potentially related to desiccation sensitivity of recalcitrant Quercus variabilis seeds. Frontiers in Plant Science, 12: 717563. Marques A, Nijveen H, Somi C, et al. 2019. Induction of desiccation tolerance in desiccation sensitive Citrus limon seeds. Journal of Integrative Plant Biology, 61(5): 624-638. Obroucheva N, Sinkevich I, Lityagina S. 2016. Physiological aspects of seed recalcitrance: a case study on the tree Aesculus hippocastanum. Tree Physiology, 36(9): 1127-1150. Oliver M J, Farrant J M, Hilhorst H W M, et al. 2020. Desiccation tolerance: avoiding cellular damage during drying and rehydration. Annual Review of Plant Biology, 71: 435-460. Pammenter N, Berjak P. 1999. A review of recalcitrant seed physiology in relation to desiccation-tolerance mechanisms. Seed Science Research, 9(1): 13-37. Ryu H, Cho H, Bae W, et al. 2014. Control of early seedling development by BES1/TPL/HDA19-mediated epigenetic regulation of ABI3. Nature Communications, 5: 4138. Stone S L, Kwong LW, Yee K M, et al. 2001. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proceedings of the National Academy of Sciences, 98(20): 11806-11811. Swaminathan K, Peterson K, Jack T. 2008. The plant B3 superfamily. Trends in Plant Science, 13: 647-655. Tang L P, Zhou C, Wang S S, et al. 2016. FUSCA3 interacting with LEAFY COTYLEDON2 controls lateral root formation through regulating YUCCA4 gene expression in Arabidopsis thaliana. New Phytologist, 213(4): 1740-1754.
|