|
黄 宇. 闽楠种子萌发与多胚苗研究. 福建林业科技, 2014, 41 (3): 27- 31.
|
|
Huang Y. Study on the seed germination and multi-seedlings in Phoebe bournei (Hemsl.) Yang. Journal of Fujian Forestry Science and Technology, 2014, 41 (3): 27- 31.
|
|
李 娟, 林键勇, 欧汉彪, 等. 闽楠种子对快速脱水的响应. 广西林业科学, 2022, 51 (6): 823- 827.
|
|
Li J, Lin J Y, Ou H B, et al. Response of Phoebe bournei seeds to rapid dehydration. Guangxi Forestry Science, 2022, 51 (6): 823- 827.
|
|
李 磊, 孟珍贵, 龙光强, 等. 植物顽拗性种子研究进展. 热带亚热带植物学报, 2016, 24 (1): 106- 118.
doi: 10.11926/j.issn.1005-3395.2016.01.015
|
|
Li L, Meng Z G, Long G Q, et al. Advances on recalcitrant seeds of plants. Journal of Tropical and Subtropical Botany, 2016, 24 (1): 106- 118.
doi: 10.11926/j.issn.1005-3395.2016.01.015
|
|
李文君, 沈永宝. ‘紫柄籽银桂’桂花种子脱水耐性与抗氧化系统的关系. 园艺学报, 2009, 36 (2): 279- 284.
doi: 10.3321/j.issn:0513-353X.2009.02.019
|
|
Li W J, Shen Y B. Changes on physiological characteristics of Osmanthus fragrans ‘Zibing Ziyingui’ seeds during dehydration. Chinese Journal of Horticulture, 2009, 36 (2): 279- 284.
doi: 10.3321/j.issn:0513-353X.2009.02.019
|
|
李雪云, 潘 萍, 臧 颢, 等. 闽楠天然次生林自然更新的影响因子研究. 林业科学研究, 2017, 30 (5): 701- 708.
|
|
Li X Y, Pan P, Zang H, et al. Study on factors affecting natural regeneration of natural secondary Phoebe bournei forest. Forest Research, 2017, 30 (5): 701- 708.
|
|
刘国贞, 吴福海, 宋华东, 等. 种子劣变机理的研究进展. 山东省农业管理干部学院学报, 2007, 23 (1): 159- 160.
|
|
Liu G Z, Wu F H, Song H D, et al. Research progress on the mechanism of seed deterioration. Journal of Shandong Agricultural Management Cadre College, 2007, 23 (1): 159- 160.
|
|
邱鹏飞, 何炎红, 田有亮. 赤霉素浸种对沙冬青种子萌发的影响. 现代农业科技, 2010, (3): 221- 222, 225.
doi: 10.3969/j.issn.1007-5739.2010.03.157
|
|
Qiu P F, He Y H, Tian Y L. Effect of gibberellin on the seed germination of Ammopiptanthus mongolicus (Maxim.) Cheng f. Modern Agricultural Science and Technology, 2010, (3): 221- 222, 225.
doi: 10.3969/j.issn.1007-5739.2010.03.157
|
|
申 婵, 钟芙蓉, 黄 玲, 等. 快速脱水对后熟黄连种子萌发及生理生化的影响. 中药材, 2019, 42 (4): 720- 724.
|
|
Shen C, Zhong F R, Huang L, et al. Effect of rapid dehydration on germination and physiological and biochemical characteristics of the ripened seeds of Coptis chinensis. Journal of Chinese Medicinal Materials, 2019, 42 (4): 720- 724.
|
|
宋松泉, 程红焱, 龙春林, 等. 2005. 种子生物学研究指南. 北京: 科学出版社, 90–92.
|
|
Song S Q, Cheng H Y, Long C L, et al. 2005. Guidelines for seed biology research. Beijing: Science Press, 90–92. [in Chinese]
|
|
宋松泉, 傅家瑞. 黄皮种子脱水敏感性与脂质过氧化作用. 植物生理学报, 1997, 23 (2): 163- 168.
doi: 10.3321/j.issn:1671-3877.1997.02.010
|
|
Song S Q, Fu J R. Dehydration sensitivity and lipid peroxidation of yellow bark seeds. Acta Phytophysiologica Sinica, 1997, 23 (2): 163- 168.
doi: 10.3321/j.issn:1671-3877.1997.02.010
|
|
宋松泉, 刘 军, 唐翠芳, 等. 种子耐脱水性的生理及分子机制研究进展. 中国农业科学, 2022, 55 (6): 1047- 1063.
doi: 10.3864/j.issn.0578-1752.2022.06.001
|
|
Song S Q, Liu J, Tang C F, et al. Research progress on the physiology and its molecular mechanism of seed desiccation tolerance. Scientia Agricultural Sciences, 2022, 55 (6): 1047- 1063.
doi: 10.3864/j.issn.0578-1752.2022.06.001
|
|
吴大荣, 王伯荪. 2001. 濒危树种闽楠种子和幼苗生态学研究. 生态学报, 21(11): 1751–1760.
|
|
Wu D R, Wang B S. 2001. Seed and seedling ecology of the endangered Phoebe bournei. Acta Ecologica Sinica, 21(11): 1751–1760. [in English]
|
|
颜世超, 高荣岐, 尹燕枰. 银杏含水量变化与活性氧清除酶活性的关系. 中国农学通报, 2005, 21 (3): 207- 210.
doi: 10.3969/j.issn.1000-6850.2005.03.059
|
|
Yan S C, Gao R Q, Yin Y P. The Relationship between moisture content of Ginkgo biloba seeds and activity of reactive-oxygen-scavenging enzymes. Chinese Agricultural Science Bulletin, 2005, 21 (3): 207- 210.
doi: 10.3969/j.issn.1000-6850.2005.03.059
|
|
张俊杰, 柴胜丰, 王满莲, 等. 2019. 珍稀濒危植物金丝李种子脱水耐性和贮藏特性. 广西植物, 39(2): 199–208.
|
|
Zhang J J, Chai S F, Wang M L, et al. 2019. Dehydration tolerance and storage characteristics of seeds of rare and endangered plant Garcinia paucinervis. Guihaia. 39(2): 199–208. [in Chinese]
|
|
张丽君, 胡 炜, 莫木信, 等. 闽楠苗木繁育及造林技术. 中南林业调查规划, 2016, 35 (2): 41- 44.
|
|
Zhang L J, Hu W, Mo M X, et al. Study on Seedling Breeding and Afforestation Technology of Phoebe bournei ( Hemsl.) Yang. Central South Forest Inventory and Planning, 2016, 35 (2): 41- 44.
|
|
周佑勋, 段小平, 肖东玉. 樟树、檫树、闽楠种子的休眠和萌发特性. 中南林学院学报, 2006, 26 (5): 79- 84.
|
|
Zhou Y X, Duan X P, Xiao D Y. Characteristics of seed dormancy and germination of three typical species in Lauraceae. Journal of Central South Forestry University, 2006, 26 (5): 79- 84.
|
|
Ali F, Qanmber G, Li F, et al. Updated role of aba in seed maturation, dormancy, and germination. Journal of Advanced Research, 2022, 35, 199- 214.
doi: 10.1016/j.jare.2021.03.011
|
|
Braybrook S A, Harada J J, et al. LECs go crazy in embryo development. Trends in Plant Science, 2008, 13 (12): 1360- 1385.
|
|
Dorone Y, Boeynaems S, Flores E, et al. 2021. A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation. The Cell, 184: 4284–4298.
|
|
Greggains V, Finch-Savage W, Atherton N, et al. Viability loss and free radical processes during desiccation of recalcitrant Avicennia marina seeds. Seed Science Research, 2001, 11 (3): 235- 242.
|
|
Han X, Zhang J H, Han S, et al. The chromosome-scale genome of Phoebe bournei reveals contrasting fates of terpene synthase (TPS)-a and TPS-b subfamilies. Plant Communications, 2022, 3 (6): 100410.
doi: 10.1016/j.xplc.2022.100410
|
|
Hodges D, DeLong J, Forney C, et al. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, , 207((4)): 604–611.
|
|
Lepiniec L, Devic M, Roscoe T J, et al. Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development. Plant Reproduction, 2018, 31 (3): 291- 307.
doi: 10.1007/s00497-018-0337-2
|
|
Li D X, Li Y C, Qian J L, et al. Comparative transcriptome analysis revealed candidate genes potentially related to desiccation sensitivity of recalcitrant Quercus variabilis seeds. Frontiers in Plant Science, 2021, 12, 717563.
doi: 10.3389/fpls.2021.717563
|
|
Marques A, Nijveen H, Somi C, et al. Induction of desiccation tolerance in desiccation sensitive Citrus limon seeds. Journal of Integrative Plant Biology, 2019, 61 (5): 624- 638.
doi: 10.1111/jipb.12788
|
|
Obroucheva N, Sinkevich I, Lityagina S. Physiological aspects of seed recalcitrance: a case study on the tree Aesculus hippocastanum. Tree Physiology, 2016, 36 (9): 1127- 1150.
doi: 10.1093/treephys/tpw037
|
|
Oliver M J, Farrant J M, Hilhorst H W M, et al. Desiccation tolerance: avoiding cellular damage during drying and rehydration. Annual Review of Plant Biology, 2020, 71, 435- 460.
doi: 10.1146/annurev-arplant-071219-105542
|
|
Pammenter N, Berjak P. A review of recalcitrant seed physiology in relation to desiccation-tolerance mechanisms. Seed Science Research, 1999, 9 (1): 13- 37.
doi: 10.1017/S0960258599000033
|
|
Ryu H, Cho H, Bae W, et al. Control of early seedling development by BES1/TPL/HDA19-mediated epigenetic regulation of ABI3. Nature Communications, 2014, 5, 4138.
doi: 10.1038/ncomms5138
|
|
Stone S L, Kwong LW, Yee K M, et al. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proceedings of the National Academy of Sciences, 2001, 98 (20): 11806- 11811.
doi: 10.1073/pnas.201413498
|
|
Swaminathan K, Peterson K, Jack T. The plant B3 superfamily. Trends in Plant Science, 2008, 13, 647- 655.
doi: 10.1016/j.tplants.2008.09.006
|
|
Tang L P, Zhou C, Wang S S, et al. FUSCA3 interacting with LEAFY COTYLEDON2 controls lateral root formation through regulating YUCCA4 gene expression in Arabidopsis thaliana. New Phytologist, 2016, 213 (4): 1740- 1754.
|