林业科学 ›› 2024, Vol. 60 ›› Issue (12): 1-12.doi: 10.11707/j.1001-7488.LYKX20230534
罗光成1,2,何潇2,雷相东2,吴璧芸2,向玮1,*
收稿日期:
2023-11-07
出版日期:
2024-12-25
发布日期:
2025-01-02
通讯作者:
向玮
基金资助:
Guangcheng Luo1,2,Xiao He2,Xiangdong Lei2,Biyun Wu2,Wei Xiang1,*
Received:
2023-11-07
Online:
2024-12-25
Published:
2025-01-02
Contact:
Wei Xiang
摘要:
目的: 以长白落叶松人工林为研究对象,探究不同立地类型的立地质量差异,实现从立地分类到立地分级,精准评价长白落叶松人工林立地质量。方法: 基于吉林省一类调查和二类调查固定样地数据,采用广义代数差分法构建林分优势高生长差分模型。通过偏相关分析筛选对长白落叶松优势高生长具有显著影响的主导立地因子并形成立地类型(ST),应用K-Means算法对立地类型聚类形成立地类型组(STG),分别以ST、STG作为随机效应构建优势高生长混合效应模型,引入指数函数、幂函数、常数加幂函数消除异方差,采用一阶自回归、复合对称和自回归移动平均3种结构考虑自相关性,选出最优混合效应模型,根据立地类型组30年生的优势高进行立地分级。结果: 最优差分模型M1.1的调整决定系数(
中图分类号:
罗光成,何潇,雷相东,吴璧芸,向玮. 长白落叶松人工林优势高广义代数差分生长模型[J]. 林业科学, 2024, 60(12): 1-12.
Guangcheng Luo,Xiao He,Xiangdong Lei,Biyun Wu,Wei Xiang. Generalized Algebraic Differential Growth Model of Dominant Height for Larix olgensis Plantations[J]. Scientia Silvae Sinicae, 2024, 60(12): 1-12.
表1
长白落叶松人工林样地描述性统计"
林分因子Stand variables | 平均值Mean | 标准差Standard deviation | 最小值Min. | 最大值Max. |
林分平均年龄Stand mean age/a | 27.0 | 9.7 | 5 | 65 |
林分优势高Stand dominant height/m | 14.5 | 3.0 | 5.6 | 23.0 |
林分平均胸径Stand average DBH/cm | 13.0 | 3.8 | 5.7 | 28.1 |
林分断面积Stand basal area/(m2·hm?2) | 13.41 | 7.23 | 0.79 | 37.13 |
林分蓄积Stand volume/(m3·hm?2) | 81.73 | 52.68 | 2.53 | 284.31 |
林分密度指数Stand density index/(tree·hm?2) | 498.1 | 246.1 | 40 | 1 285 |
表2
备选差分模型"
编号 No. | 参考文献 References | 差分模型 Difference model | X的解 Solution for X | 自由参数 Free parameter | 基础模型 Base model |
M1 | Richards | ||||
M2 | |||||
M3 | |||||
M4 | Korf | ||||
M5 | |||||
M6 | |||||
M7 | 修正Weibull Adjusted Weibull | ||||
M8 | Hossfeld | ||||
M9 | |||||
M10 | |||||
M11 | Schumacher | ||||
M12 | Gompertz | ||||
M13 |
表3
长白落叶松人工林样地立地因子分级"
立地因子 Site factors | 等级范围(样本量) Level range (sample size) |
海拔 Altitude/m | Ⅰ: 0~200 (8); Ⅱ: 201~400 (539); Ⅲ: 401~600 (566); Ⅳ: 601~800 (310); Ⅴ: 801~1 000 (160); Ⅵ: 1 001~1 200 (35); Ⅶ: 1 201~1 400 (4) |
坡度 Slope degree/(°) | 平坡Conservative slope: 0~4 (401); 缓坡Gentle slope: 5~14 (786); 斜坡Incline slope: 15~24 (379); 陡坡Steep slope: 25~34 (45); 急坡Acute slope: 35~44 (11) |
坡向(方位角) Slope aspect (azimuth)/(°) | 北坡North slope: 338~22 (186); 东北坡Northeast slope: 23~67 (142); 东坡East slope: 68~112 (136); 东南坡Southeast slope: 113~157 (205); 南坡South slope: 158~202 (135); 西南坡Southwest slope: 203~247 (122); 西坡West slope: 248~292 (147); 西北坡Northwest slope: 293~337 (148); 无坡向No aspect: 坡度<5的地段Slope degree <5 (401) |
坡位 Slope position | 脊部Ridge (28); 上坡Up slope (386); 中坡Middle slope (640); 下坡Down slope (418); 山谷Valley (53) ;平地Flat (97) |
土层厚度 Soil thickness/cm | 厚Thick: ≥60 (201); 中Middle: 30~59 (1 290); 薄Thin: <30 (131) |
腐殖质层厚度 Humus thickness/cm | 厚Thick: ≥5.0 (328); 中Middle: 2.0~4.9 (1 018); 薄Thin: <2.0 (276) |
表4
备选差分模型参数估计与评价"
编号 No. | 与立地无关参数 Site independent parameter (SIP) | 差分模型参数 Difference model parameter | RMSE/m | rRMSE(%) | |||||
b | c | d1 | d2 | d3 | |||||
M1 | 0.054 | 5.085 | ?1.353 | 0.865 | 1.093 | 7.756 | |||
M2 | 0.054 | ?3.054 | 12.211 | 0.864 | 1.095 | 7.770 | |||
M3 | 0.033 | 0.423 | 0.849 | 1.156 | 8.203 | ||||
M4 | 0.540 | ?2.756e+04 | 9.866e+04 | 0.846 | 1.166 | 8.277 | |||
M5 | 0.381 | 16.459 | 0.864 | 1.095 | 7.770 | ||||
M6 | 0.659 | 76.297 | ?20.469 | 0.862 | 1.106 | 7.852 | |||
M7 | 0.318 | 38.912 | ?9.535 | 0.830 | 0.091 | 3.484 | |||
M8 | 1.050 | 27.604 | 6.110e-06 | 0.858 | 1.119 | 7.940 | |||
M9 | 2.801 | 12.149 | 122.262 | 0.449 | 2.206 | 15.661 | |||
M10 | 1.213 | 0.336 | ?156.340 | 4 513.895 | 0.864 | 1.095 | 7.774 | ||
M11 | ?2.527 | 0.652 | 0.131 | 4.993 | |||||
M12 | 0.079 | 7.639 | ?1.967 | 0.864 | 1.095 | 7.770 | |||
M13 | 0.079 | ?3.923 | 16.943 | 0.864 | 1.096 | 7.778 |
表8
考虑异方差和自相关的混合效应模型比较①"
模型 Model | 异方差函数 Variance function | 自相关结构 Autocorrelation structure | AIC | BIC | LRT | P |
M1.3 | 无None | 无None | 4 727.464 | 4 765.204 | ||
M1.4 | var Exp | 无None | 不收敛Nonconvergence | |||
M1.5 | var Power | 无None | 4 557.201 | 4 600.332 | 172.263 | <0.001 |
M1.6 | var Const Power | 无None | 4 559.201 | 4 607.724 | 172.263 | <0.001 |
M1.7 | var Power | AR1 | 4 402.492 | 4 451.014 | 156.709 | <0.001 |
M1.8 | var Power | CS | 4 558.609 | 4 607.132 | 0.592 | 0.442 |
M1.9 | var Power | ARMA(1, 1) | 4 403.725 | 4 457.640 | 157.475 | <0.001 |
表9
吉林省30年生长白落叶松人工林立地分级"
立地等级 Rank of site | 优势高 Dominant height/m | 立地类型Site types | ||
海拔 Altitude/m | 土层厚度 Soil thickness/cm | 腐殖质层 厚度Humus thickness/cm | ||
1 | 18.7 | 0~200 | 薄Thin | 中Middle |
1 001~1 200 | 中Middle | 厚Thick | ||
801~1 000 | 中Middle | 厚Thick | ||
201~400 | 薄Thin | 厚Thick | ||
601~800 | 中Middle | 厚Thick | ||
801~1 000 | 薄Thin | 厚Thick | ||
2 | 17.6 | 601~800 | 薄Thin | 厚Thick |
1 001~1 200 | 中Middle | 薄Thin | ||
801~1 000 | 薄Thin | 薄Thin | ||
601~800 | 薄Thin | 中Middle | ||
801~1 000 | 厚Thick | 薄Thin | ||
601~800 | 中Middle | 薄Thin | ||
401~600 | 薄Thin | 中Middle | ||
801~1 000 | 厚Thick | 厚Thick | ||
401~600 | 薄Thin | 薄Thin | ||
1 001~1 200 | 厚Thick | 中Middle | ||
3 | 16.2 | 401~600 | 中Middle | 厚Thick |
601~800 | 厚Thick | 中Middle | ||
801~1 000 | 中Middle | 中Middle | ||
801~1 000 | 薄Thin | 中Middle | ||
1 201~1 400 | 厚Thick | 中Middle | ||
601~800 | 薄Thin | 薄Thin | ||
1 001~1 200 | 中Middle | 中Middle | ||
401~600 | 薄Thin | 厚Thick | ||
601~800 | 厚Thick | 薄Thin | ||
1 201~1 400 | 中Middle | 中Middle | ||
601~800 | 中Middle | 中Middle | ||
1 001~1 200 | 厚Thick | 厚Thick | ||
601~800 | 厚Thick | 厚Thick | ||
201~400 | 中Middle | 厚Thick | ||
201~400 | 薄Thin | 薄Thin | ||
801~1 000 | 厚Thick | 中Middle | ||
201~400 | 薄Thin | 中Middle | ||
401~600 | 中Middle | 中Middle | ||
4 | 14.4 | 401~600 | 中Middle | 薄Thin |
201~400 | 厚Thick | 中Middle | ||
401~600 | 厚Thick | 厚Thick | ||
201~400 | 中Middle | 中Middle | ||
401~600 | 厚Thick | 薄Thin | ||
401~600 | 厚Thick | 中Middle | ||
201~400 | 中Middle | 薄Thin | ||
5 | 12.8 | 0~200 | 中Middle | 薄Thin |
201~400 | 厚Thick | 厚Thick | ||
0~200 | 中Middle | 中Middle | ||
201~400 | 厚Thick | 薄Thin |
曹元帅, 孙玉军. 基于广义代数差分法的杉木人工林地位指数模型. 南京林业大学学报(自然科学版), 2017, 41 (5): 79- 84. | |
Cao Y S, Sun Y J. Generalized algebraic difference site index model for Chinese fir plantation. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41 (5): 79- 84. | |
柴宗政, 王得祥, 郝亚中, 等. 秦岭中段华北落叶松人工林演替动态. 林业科学, 2014, 50 (2): 14- 21. | |
Chai Z Z, Wang D X, Hao Y Z, et al. Succession dynamics of Larix principis-rupprechtii plantation in intermediate section of Qinling Mountains. Scientia Silvae Sinicae, 2014, 50 (2): 14- 21. | |
段 劼, 马履一, 贾黎明, 等. 北京低山地区油松人工林立地指数表的编制及应用. 林业科学, 2009, 45 (3): 7- 12.
doi: 10.3321/j.issn:1001-7488.2009.03.002 |
|
Duan J, Ma L Y, Jia L M, et al. Establishment and application of site index table for Pinus tabulaeformis plantation in the low elevation area of Beijing. Scientia Silvae Sinicae, 2009, 45 (3): 7- 12.
doi: 10.3321/j.issn:1001-7488.2009.03.002 |
|
段光爽, 郑亚丽, 洪 亮, 等. 基于潜在生产力的华北落叶松纯林和白桦山杨混交林立地质量评价. 林业科学, 2022, 58 (10): 1- 9. | |
Duan G S, Zheng Y L, Hong L, et al. A potential productivity-based approach of site quality evaluation for larch pure forest and birch-aspen mixed forest. Scientia Silvae Sinicae, 2022, 58 (10): 1- 9. | |
何 静, 李新建, 朱晋梅, 等. 基于最粗优势木胸径生长的湖南栎类天然林立地质量评价模型. 林业科学, 2022, 58 (8): 89- 98. | |
He J, Li X J, Zhu J M, et al. Site quality evaluation model of natural Quercus forests in Hunan based on the growth of the thickest dominant tree diameter at breast height. Scientia Silvae Sinicae, 2022, 58 (8): 89- 98. | |
华伟平, 武健伟, 于丽瑶, 等. 基于森林潜在生产力评价模型的林地分等及应用. 林业资源管理, 2023, (3): 29- 37. | |
Hua W P, Wu J W, Yu L Y, et al. Forestland grading based on forest potential productivity evaluation model and its application. Forest Resources Management, 2023, (3): 29- 37. | |
惠淑荣, 李丽锋, 刘 强, 等. 辽东地区日本落叶松立地分类和立地质量研究. 西北林学院学报, 2011, 26 (3): 139- 142. | |
Hui S R, Li L F, Liu Q, et al. Analysis of site condition and quality of Larix kaempferi in eastern Liaoning Province. Journal of Northwest Forestry University, 2011, 26 (3): 139- 142. | |
赖文豪, 席 沁, 武海龙, 等. 内蒙古兴和县低山丘陵立地类型划分与林草适宜性评价. 浙江农林大学学报, 2018, 35 (2): 331- 339.
doi: 10.11833/j.issn.2095-0756.2018.02.018 |
|
Lai W H, Xi Q, Wu H L, et al. Site classification type and vegetation suitability evaluation for hilly land in Xinghe, Inner Mongolia. Journal of Zhejiang A & F University, 2018, 35 (2): 331- 339.
doi: 10.11833/j.issn.2095-0756.2018.02.018 |
|
雷相东, 唐守正, 符利勇, 等. 2020. 森林立地质量定量评价: 理论 方法 应用. 北京: 中国林业出版社. | |
Lei X D, Tang S Z, Fu L Y, et al. 2020. Quantitative evaluation of forest site quality: theory, method, application. Beijing: China Forestry Publishing House. [in Chinese] | |
李斌成, 许业洲, 袁 慧, 等. 湖北省日本落叶松差分型立地指数模型构建. 森林与环境学报, 2020, 40 (4): 433- 441. | |
Li B C, Xu Y Z, Yuan H, et al. Construction of a differential site index model for a Larix kaempferi plantation in Hubei Province. Journal of Forest and Environment, 2020, 40 (4): 433- 441. | |
李平平, 王彦辉, 段文标, 等. 黄土高原刺槐人工林立地指数变化及评价. 林业科学, 2023, 59 (4): 18- 31.
doi: 10.11707/j.1001-7488.LYKX20220621 |
|
Li P P, Wang Y H, Duan W B, et al. Variation and evaluation of site index of black locust plantations on the Loess Plateau of northwest China. Scientia Silvae Sinicae, 2023, 59 (4): 18- 31.
doi: 10.11707/j.1001-7488.LYKX20220621 |
|
李晓燕, 段爱国, 张建国. 不同产区杉木人工林初植密度对优势高生长的影响. 林业科学, 2023, 59 (8): 22- 29.
doi: 10.11707/j.1001-7488.LYKX20210836 |
|
Li X Y, Duan A G, Zhang J G. Effects of initial planting density on dominant height growth of Chinese fir (Cunninghamia lanceolata) plantation in different distribution areas. Scientia Silvae Sinicae, 2023, 59 (8): 22- 29.
doi: 10.11707/j.1001-7488.LYKX20210836 |
|
刘创民, 梁海英, 罗菊春. 西林吉林业局天然兴安落叶松立地条件的调查研究. 林业科学, 1993, 29 (5): 456- 462. | |
Liu C M, Liang H Y, Luo J C. Investigation on site conditions of natural Larix gmelinii in the Forestry Bureau of Xilinji. Scientia Silvae Sinicae, 1993, 29 (5): 456- 462. | |
刘佳琪, 魏广阔, 史常青, 等. 基于MaxEnt模型的北方抗旱造林树种适宜区分布. 北京林业大学学报, 2022, 44 (7): 63- 77.
doi: 10.12171/j.1000-1522.20210527 |
|
Liu J Q, Wei G K, Shi C Q, et al. Suitable distribution area of drought-resistant afforestation tree species in north China based on MaxEnt model. Journal of Beijing Forestry University, 2022, 44 (7): 63- 77.
doi: 10.12171/j.1000-1522.20210527 |
|
马 羽, 许业洲, 袁 慧, 等. 湖北省杉木人工林胸径差分方程及多形地位指数表研究. 森林工程, 2023, 39 (2): 72- 81. | |
Ma Y, Xu Y Z, Yuan H, et al. Study on DBH difference equation and polymorphic site index table of Chinese fir plantation in Hubei Province. Forest Engineering, 2023, 39 (2): 72- 81. | |
孟宪宇, 陈东来. 山杨次生林地位指数表编制方法的研究. 北京林业大学学报, 2001, 23 (3): 47- 51.
doi: 10.3321/j.issn:1000-1522.2001.03.011 |
|
Meng X Y, Chen D L. Study on constructive method of site index table for poplar secondary forest. Journal of Beijing Forestry University, 2001, 23 (3): 47- 51.
doi: 10.3321/j.issn:1000-1522.2001.03.011 |
|
倪成才, 于福平, 张玉学, 等. 差分生长模型的应用分析与研究进展. 北京林业大学学报, 2010, 32 (4): 284- 292. | |
Ni C C, Yu F P, Zhang Y X, et al. Application analysis and recent advances of projection growth models. Journal of Beijing Forestry University, 2010, 32 (4): 284- 292. | |
牛亦龙, 董利虎, 李凤日. 基于广义代数差分法的长白落叶松人工林地位指数模型. 北京林业大学学报, 2020, 42 (2): 9- 18. | |
Niu Y L, Dong L H, Li F R. Site index model for Larix olgensis plantation based on generalized algebraic difference approach derivation. Journal of Beijing Forestry University, 2020, 42 (2): 9- 18. | |
牛亦龙. 2021. 长白落叶松-水曲柳带状混交林立地质量评价. 哈尔滨: 东北林业大学. | |
Niu Y L. 2021. Evaluation of site quality for Larix olgensis and Fraxinus mandshurica belt-mixed plantation. Harbin: Northeast Forestry University. [in Chinese] | |
孙拥康, 汤景明, 王 怡, 等. 鄂西山区日本落叶松人工林全林整体模型研究与应用. 森林工程, 2023, 39 (3): 57- 63. | |
Sun Y K, Tang J M, Wang Y, et al. Research and application of the integrated stand growth model of Larix kaempferi plantation in the mountainous area of western Hubei. Forest Engineering, 2023, 39 (3): 57- 63. | |
宋 争, 黄 朗, 胡 松, 等. 基于立地混合效应的湖南丘陵平原区杉木多形立地指数模型研究. 林业科学研究, 2022, 35 (5): 172- 179. | |
Song Z, Huang L, Hu S, et al. Polymorphic site-index model with site mixed effects for Chinese fir plantations in Hunan hilly plains. Forest Research, 2022, 35 (5): 172- 179. | |
王冬至, 张冬燕, 王 方, 等. 塞罕坝主要立地类型针阔混交林树高曲线构建. 北京林业大学学报, 2016, 38 (10): 7- 14. | |
Wang D Z, Zhang D Y, Wang F, et al. Height curve construction of needle and broadleaved mixed forest under main site types in Saihanba, Hebei of northern China. Journal of Beijing Forestry University, 2016, 38 (10): 7- 14. | |
王志波, 季 蒙, 李永乐, 等. 华北落叶松人工林差分地位指数模型构建. 林业资源管理, 2021, (1): 156- 163. | |
Wang Z B, Ji M, Li Y L, et al. Construction of difference site index model for Larix principis-rupprechtii plantation. Forest Resources Management, 2021, (1): 156- 163. | |
袁其站, 张慧勤, 李剑吾, 等. 河南省日本落叶松适生区研究. 北京林业大学学报, 2000, 22 (3): 44- 47. | |
Yuan Q Z, Zhang H Q, Li J W, et al. The suitable area of Larix kaempferi in Henan Province. Journal of Beijing Forestry University, 2000, 22 (3): 44- 47. | |
张春霞, 冯自茂, 李文鑫, 等. 陕西黄陵油松人工林立地类型划分及评价. 西北农林科技大学学报(自然科学版), 2021, 49 (1): 55- 63. | |
Zhang C X, Feng Z M, Li W X, et al. Site classification and evaluation of Pinus tabulaeformis plantation in Huangling, Shaanxi. Journal of Northwest A & F University (Natural Science Edition), 2021, 49 (1): 55- 63. | |
赵 磊, 倪成才, Gordon Nigh. 加拿大哥伦比亚省美国黄松广义代数差分型地位指数模型. 林业科学, 2012, 48 (3): 74- 81.
doi: 10.11707/j.1001-7488.20120312 |
|
Zhao L, Ni C C, Nigh G. Generalized algebraic difference site index model for ponderosa pine in British Columbia, Canada. Scientia Silvae Sinicae, 2012, 48 (3): 74- 81.
doi: 10.11707/j.1001-7488.20120312 |
|
Adame P, Cañellas I, Roig S, et al. Modelling dominant height growth and site index curves for rebollo oak (Quercus pyrenaica Willd.). Annals of Forest Science, 2006, 63 (8): 929- 940.
doi: 10.1051/forest:2006076 |
|
Bravo-Oviedo A, del Río M, Montero G. Site index curves and growth model for Mediterranean maritime pine (Pinus pinaster Ait.) in Spain. Forest Ecology and Management, 2004, 201 (2/3): 187- 197. | |
Bravo-Oviedo A, del Río M, Montero G. Geographic variation and parameter assessment in generalized algebraic difference site index modelling. Forest Ecology and Management, 2007, 247 (1/2/3): 107- 119. | |
Bravo-Oviedo A, Roig S, Bravo F, et al. Environmental variability and its relationship to site index in Mediterranean maritime pine. Forest Systems, 2011, 20 (1): 50- 64.
doi: 10.5424/fs/2011201-9106 |
|
Christophe C, Gil K, Laurent S A, et al. Relationship between soil nutritive resources and the growth and mineral nutrition of a beech (Fagus sylvatica) stand along a soil sequence. Catena, 2017, 155, 156- 169.
doi: 10.1016/j.catena.2017.03.013 |
|
Cieszewski C J, Bailey R L. Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes. Forest Science, 2000, 46 (1): 116- 126.
doi: 10.1093/forestscience/46.1.116 |
|
de Souza H J, Miguel E P, Nascimento R G M, et al. Thinning-response modifier term in growth models: an application on clonal Tectona grandis Linn F. stands at the amazonian region. Forest Ecology and Management, 2022, 511, 120109.
doi: 10.1016/j.foreco.2022.120109 |
|
Diéguez-Aranda U, González J G A, Anta M B, et al. Site quality equations for Pinus sylvestris L. plantations in Galicia (northwestern Spain). Annals of Forest Science, 2005, 62 (2): 143- 152.
doi: 10.1051/forest:2005006 |
|
Duan G S, Lei X D, Zhang X Q, et al. Site index modeling of larch using a mixed-effects model across regional site types in northern China. Forests, 2022, 13 (5): 815.
doi: 10.3390/f13050815 |
|
Elfving B, Kiviste A. Construction of site index equations for Pinus sylvestris L. using permanent plot data in Sweden. Forest Ecology and Management, 1997, 98 (2): 125- 134.
doi: 10.1016/S0378-1127(97)00077-7 |
|
Ercanli İ, Kahrİman A, Yavuz H. Dynamic base-age invariant site index models based on generalized algebraic difference approach for mixed Scots pine (Pinus sylvestris L.) and Oriental beech (Fagus orientalis Lipsky) stands. Turkish Journal of Agriculture and Forestry, 2014, 38, 134- 147.
doi: 10.3906/tar-1212-67 |
|
Gülsoy S, Çinar T. The relationships between environmental factors and site index of anatolian black pine (Pinus nigra Arn. subsp. pallasiana (Lamb. ) Holmboe) stands in Demİrcİ (Manİsa) district, Turkey. Applied Ecology and Environmental Research, 2019, 17 (1): 1235- 1246.
doi: 10.15666/aeer/1701_12351246 |
|
Guo Y R, Han Y Y, Wu B G, et al. Study on modelling of site quality evaluation and its dynamic update technology for plantation forests. Nature Environment and Pollution Technology, 2013, 12 (4): 591- 597. | |
Hipler S M, Spiecker H, Wu S R. Dynamic top height growth models for eight native tree species in a cool-temperate region in northeast China. Forests, 2021, 12 (8): 965.
doi: 10.3390/f12080965 |
|
Koirala A, Montes C R, Bullock B P. Modeling dominant height using stand and water balance variables for loblolly pine in the western Gulf, US. Forest Ecology and Management, 2021, 479, 118610.
doi: 10.1016/j.foreco.2020.118610 |
|
Lopez-Senespleda E, Bravo-Oviedo A, Alonso R, et al. Resource communication. Modeling dominant height growth including site attributes in the GADA approach for Quercus faginea Lam. in Spain. Forest Systems, 2014, 23 (3): 494- 499.
doi: 10.5424/fs/2014233-04937 |
|
Merganič J, Pichler V, Gömöryová E, et al. Modelling impact of site and terrain morphological characteristics on biomass of tree species in Putorana Region. Plants, 2021, 10 (12): 2722.
doi: 10.3390/plants10122722 |
|
Messaoud Y, Chen Han Y H. The influence of recent climate change on tree height growth differs with species and spatial environment. PLoS One, 2011, 6 (2): e14691.
doi: 10.1371/journal.pone.0014691 |
|
Nava-Nava A, Santiago-García W, Quiñonez-Barraza G, et al. Climatic and topographic variables improve estimation accuracy of Patula pine forest site productivity in southern Mexico. Forests, 2022, 13 (8): 1277.
doi: 10.3390/f13081277 |
|
Oğuzoğlu Ş, Özkan K. Productivity distribution modelling of Anatolian black pine (Pinus nigra subsp. pallasiana var. pallasiana) in the Türkmen Mountain, Eskişehir. Biological Diversity and Conservation, 2015, 2 (8): 134- 140. | |
Palahí M, Tomé M, Pukkala T, et al. Site index model for Pinus sylvestris in north-east Spain. Forest Ecology and Management, 2004, 187 (1): 35- 47.
doi: 10.1016/S0378-1127(03)00312-8 |
|
Reineke L H. Perfecting a stand-density index for even-aged forests. Journal of Agriculture Research, 1933, 46 (7): 627- 638. | |
Scolforo H F, de Castro Neto F, Soares Scolforo J R, et al. Modeling dominant height growth of Eucalyptus plantations with parameters conditioned to climatic variations. Forest Ecology and Management, 2016, 380, 182- 195.
doi: 10.1016/j.foreco.2016.09.001 |
|
Soong J L, Janssens I A, Grau O, et al. Soil properties explain tree growth and mortality, but not biomass, across phosphorus-depleted tropical forests. Scientific Reports, 2020, 10 (1): 2302.
doi: 10.1038/s41598-020-58913-8 |
|
Tahar S, Marc P, Salah G, et al. Modeling dominant height growth in planted Pinus pinea stands in northwest of Tunisia. International Journal of Forestry Research, 2012, 902381. | |
Takahashi K, Hirosawa T, Morishima R. How the timberline formed: altitudinal changes in stand structure and dynamics around the timberline in central Japan. Annals of Botany, 2012, 109 (6): 1165- 1174.
doi: 10.1093/aob/mcs043 |
|
Weber-Blaschke G, Heitz R, Blaschke M, et al. Growth and nutrition of young European ash (Fraxinus excelsior L.) and sycamore maple (Acer pseudoplatanus L.) on sites with different nutrient and water statuses. European Journal of Forest Research, 2008, 127 (6): 465- 479.
doi: 10.1007/s10342-008-0230-x |
|
Zang H, Lei X D, Zeng W S. Height–diameter equations for larch plantations in northern and northeastern China: a comparison of the mixed-effects, quantile regression and generalized additive models. Forestry, 2016, 89 (4): 434- 445.
doi: 10.1093/forestry/cpw022 |
|
Zhu G Y, Hu S, Chhin S, et al. Modelling site index of Chinese fir plantations using a random effects model across regional site types in Hunan Province, China. Forest Ecology and Management, 2019, 446, 143- 150.
doi: 10.1016/j.foreco.2019.05.039 |
[1] | 何静,李新建,朱晋梅,朱光玉. 基于最粗优势木胸径生长的湖南栎类天然林立地质量评价模型[J]. 林业科学, 2022, 58(8): 89-98. |
[2] | 董灵波,蔺雪莹,张一帆,刘兆刚. 兼顾碳汇和木材生产的长白落叶松人工林最优轮伐期[J]. 林业科学, 2022, 58(5): 18-30. |
[3] | 段光爽,郑亚丽,洪亮,宋新宇,符利勇. 基于潜在生产力的华北落叶松纯林和白桦山杨混交林立地质量评价[J]. 林业科学, 2022, 58(10): 1-9. |
[4] | 陈星京,冯林艳,张宇超,刘清旺,杨朝晖,符利勇,白晋华. 基于机载激光雷达的崇礼冬奥核心区林分地上生物量反演[J]. 林业科学, 2022, 58(10): 35-46. |
[5] | 张晓芳,郭旭展,洪亮,陈涛,符利勇,张会儒. 冬奥核心区华北落叶松和白桦单木冠幅预测模型——组级贝叶斯模型、加性模型和混合效应模型比较[J]. 林业科学, 2022, 58(10): 89-100. |
[6] | 白羽,庞勇,夏晓运,贾炜玮. 长白落叶松解析木数据参数化3-PG模型[J]. 林业科学, 2022, 58(1): 98-110. |
[7] | 张晓文,于青军,罗桂生,贾茜,吴丹妮,贾忠奎. 平泉油松建筑材林立地类型划分及立地质量评价[J]. 林业科学, 2021, 57(9): 1-12. |
[8] | 赵婷婷,王冬至,张冬燕,郭立,黄选瑞. 塞罕坝华北落叶松人工林树冠外部轮廓模型[J]. 林业科学, 2021, 57(5): 108-118. |
[9] | 胡雪凡,张会儒,段光爽,卢军. 基于交角和密集度的竞争指数构建及评价[J]. 林业科学, 2021, 57(4): 182-190. |
[10] | 夏晓运,庞勇,黄庆丰,吴荣,陈东升,白羽. 基于3-PG模型的长白落叶松生物量生长预测[J]. 林业科学, 2021, 57(3): 67-78. |
[11] | 刘帅,李建军,卿东升,朱凯文,马振燕. 气候敏感的青冈栎单木胸径生长模型[J]. 林业科学, 2021, 57(1): 95-104. |
[12] | 刘宁,丁昌俊,李波,丁密,苏晓华,黄秦军. 12个欧美杨无性系生长初期基因型与环境的互作效应[J]. 林业科学, 2020, 56(8): 63-72. |
[13] | 曹业凡,汪来发,王曦茁,范结红. 松材线虫对长白落叶松的致病性[J]. 林业科学, 2020, 56(11): 108-115. |
[14] | 郑聪慧, 张鸿景, 王玉忠, 代剑锋, 党磊, 杜子春, 刘建婷, 高运茹. 基于BLUP和GGE双标图的华北落叶松家系区域试验分析[J]. 林业科学, 2019, 55(8): 73-83. |
[15] | 李春明,赵丽芳,李利学. 基于混合效应模型和零膨胀模型方法的蒙古栎林分水平枯损模型[J]. 林业科学, 2019, 55(11): 27-36. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||