欢迎访问林业科学,今天是

林业科学 ›› 2022, Vol. 58 ›› Issue (5): 18-30.doi: 10.11707/j.1001-7488.20220503

•   • 上一篇    下一篇

兼顾碳汇和木材生产的长白落叶松人工林最优轮伐期

董灵波1,2,蔺雪莹1,张一帆3,刘兆刚1,2,*   

  1. 1. 东北林业大学林学院 森林生态系统可持续经营教育部重点实验室 哈尔滨 150040
    2. 黑龙江省森林资源高效培育技术研发团队 哈尔滨 150040
    3. 中船(浙江)海洋科技有限公司 舟山 316100
  • 收稿日期:2021-05-16 出版日期:2022-05-25 发布日期:2022-08-19
  • 通讯作者: 刘兆刚
  • 基金资助:
    国家自然科学基金项目(31700526);黑龙江省自然科学基金项目(YQ2021C006)

Optimal Rotation of Larix olgensis Plantation in Considering Carbon Sequestration and Timber Production

Lingbo Dong1,2,Xueying Lin1,Yifan Zhang3,Zhaogang Liu1,2,*   

  1. 1. School of Forestry Key Laboratory of Sustainable Forest Ecosystem Management of Ministry of Education, Northeast Forestry University Harbin 150040
    2. Technology Development Team for High-Efficient Silviculture of Forest Resources of Heilongjiang Province Harbin 150040
    3. CSSC (Zhejiang) Ocean Technology Co., Ltd Zhoushan 316100
  • Received:2021-05-16 Online:2022-05-25 Published:2022-08-19
  • Contact: Zhaogang Liu

摘要:

目的: 针对当前人工林经营重木材收益、轻碳汇效益的问题, 探究兼顾碳汇和木材生产的人工林最优轮伐期, 为人工林多目标经营提供理论依据。方法: 以黑龙江省东北林业大学帽儿山实验林场35块长白落叶松人工林样地为研究对象, 以Faustmann-Hartman模型为基础, 综合考虑乔木层生物量碳库、生物质能源碳库、采伐剩余物碳库和木材产品碳库, 构建长白落叶松人工林碳汇木材复合经营的最优轮伐期确定模型; 设计4种模拟情景, 情景1考虑木材收益、生物质能源收益和经营成本, 情景2—4分别在情景1的基础上依次加入乔木层生物量碳库、采伐剩余物碳库和木材产品碳库, 对各模拟情景分别量化不同碳价格、贴现率、枝叶生物质能源比例等因素对长白落叶松人工林最优轮伐期、木材产量、碳汇量以及林地期望值的影响。结果: 基准情景下(碳价格100元·t-1, 贴现率5%, 枝叶生物质能源比例20%), 林地期望值整体随林分年龄增加呈先增加后减小的趋势, 可采用二次多项式进行模拟(Ra2 > 0.60)。情景1—4的最优轮伐期均为35年, 其所对应的林地期望值分别为50 288、53 638、53 263和53 071元·hm-2, 情景2—4的林地期望值分别较情景1增加约6.66%、5.92%和5.53%。对于情景2—4来说, 能够使长白落叶松人工林最优轮伐期延长1年的最低碳价格分别为1 500、1 000和1 000元·t-1 C, 其对应的林地期望值可分别达到100 667元·hm-2、80 171元·hm-2和78 266元·hm-2, 较情景1显著增加约87.7%、50.5%和47.5%; 当贴现率从5%增至9%时, 最优轮伐期提前约4年, 林地期望值减少约49 200元·hm-2; 对同一贴现率而言, 不同模拟情景下最优轮伐期和林地期望值的差异均不显著。结论: 在当前木材和碳交易市场约束下, 长白落叶松人工林经营仍以木材收益占绝对主导地位, 碳库种类增加对最优轮伐期改变不明显, 但显著影响林地期望值。碳价格和贴现率显著影响长白落叶松人工林的最优轮伐期和林地期望值, 其中能够使长白落叶松人工林最优轮伐期延长1年的最低碳价格至少应为1 000元·t-1

关键词: 长白落叶松, 碳汇, 轮伐期, Faustmann-Hartman模型, 碳库

Abstract:

Objective: Increasing forest carbon sequestration has become an important measure to deal with climate change. However, the management of plantation in China is still based on timber income, ignoring the ecological benefits of forests for carbon sequestration. To coordinate the contradiction between carbon sequestration and timber production, this paper aims to explore the optimal rotation period of Larix olgensis plantation by taking into account both carbon sink and wood production, so as to provide a theoretical basis for the multi-objective management of L. olgensis plantation in this area. Method: This study was conducted in 35 plots of Larix olgensis plantation in the experimental forest farm of Northeast Forestry University in Maoershan, Heilongjiang Province. Based on Faustmann-Hartman model, an optimal rotation period determination model of compound management of L. olgensis plantation for both carbon sequestration and timber production was constructed, in comprehensively considering the arbor layer biomass carbon pool, DOM carbon pool, forest product carbon pool. According to the types of carbon pools considered, four different simulation scenarios were designed in this study. Scenario 1 only considers timber benefits, biomass energy benefits and operating costs; Scenario 2 adds additional biomass carbon pool; Scenario 3 further considers the impact of logging residue carbon pool; Scenario 4 adds the impact of carbon release penalties for commercial materials on the basis of Scenario 3. For each simulation scenario, the effects of different carbon prices, discount rates, biomass energy ratios and other factors on the optimal rotation, timber production, carbon sink and land expected value of L. olgensis plantation were quantified. Result: Under the baseline scenario (carbon price: 100 yuan·t-1 C; discount rate: 5%; the proportion of branch and leaf biomass energy: 20%), the overall expected value of forest land showed a clear trend of first increasing and then decreasing with the increase of stand age, which can be simulated by quadratic multi pattern (Ra2 > 0.60). The optimal rotation period for scenarios 1 to 4 was 35 a, and the corresponding forest land expected value was 50 288, 53 638, 53 263 and 53 071 yuan·hm-2, respectively. For scenarios 2 to 4, the expect value of forest land increased by about 6.66%, 5.92% and 5.53% respectively compared to scenario 1. For Scenarios 2-4, the minimum carbon price that can extend the optimal rotation period of L. olgensis plantation by one year was 1, 500 and 1, 000 and 1000 yuan·t-1 C, and the corresponding forest land expected values reached 100 667, 80 171 and 78 266 yuan·hm-2, respectively, with an increase of 87.7%, 50.5% and 47.5% compared with scenario 1. When the discount rate increased from 5% to 9%, the optimal rotation age was advanced by about 4 years, and forest land expect value decreased by about 49 200 yuan·hm-2. For the same discount rate, there was no significant difference between the optimal rotation period and the expected value of forest land under different simulation scenarios. Conclusion: Under the constraints of the current timber and carbon trading markets, timber revenue still dominates the management of Larix olgensis plantations absolutely. The increase of carbon pool types does not significantly change the optimal rotation age, but it has an impact on the forest land expected value. Carbon price and discount rate can significantly affect the optimal rotation period and land expected value of L. olgensis plantation. The minimum carbon price that can extend the optimal rotation period of L. olgensis plantation by 1 year should be at least 1 000 yuan. t-1 C.

Key words: Larix olgensis, carbon sequestration, optimal rotation age, Faustmann-Hartman model, carbon pool

中图分类号: