 
		林业科学 ›› 2021, Vol. 57 ›› Issue (1): 95-104.doi: 10.11707/j.1001-7488.20210110
刘帅,李建军,卿东升,朱凯文,马振燕
收稿日期:2020-03-19
									
				
									
				
									
				
											出版日期:2021-01-25
									
				
											发布日期:2021-03-10
									
			通讯作者:
					李建军
												基金资助:Shuai Liu,Jianjun Li,Dongsheng Qing,Kaiwen Zhu,Zhenyan Ma
Received:2020-03-19
									
				
									
				
									
				
											Online:2021-01-25
									
				
											Published:2021-03-10
									
			Contact:
					Jianjun Li   
												摘要:
目的: 构建气候敏感的青冈栎单木混合效应模型,探索气候对青冈栎胸径生长的长期影响,为未来气候变化下的青冈栎林经营决策提供依据。方法: 基于湖南省芦头林场青冈栎解析木数据,选择Mitscherlich生长方程作为基础模型,构建包含气候变量的再参数化模型和非线性混合效应模型,预测未来3种典型浓度路径(RCP2.6、RCP4.5和RCP8.5)下2011—2100年青冈栎单木胸径生长。结果: 1)非线性混合效应模型能够准确描述青冈栎单木胸径生长与气候变量之间的复杂关系,在拟合优度、误差水平等方面相比传统回归模型更具优势;2)加入气候变量的青冈栎生长模型能够响应气候变化对林木生长的影响,最冷月均温是影响青冈栎胸径生长最主要的气候变量,并负相关于胸径生长,其他气候变量在统计上不显著没有入选生长模型,对青冈栎生长的影响尚不明确;3)青冈栎胸径生长对不同时期不同气候场景的响应不同,高排放的RCP8.5对青冈栎胸径生长的不利影响更大,低排放的RCP2.6对青冈栎胸径生长的负面影响相对较小,这些影响随时间推移将更加强烈。预计至2100年,30年树龄的青冈栎胸径生长在RCP2.6、RCP4.5和RCP8.5场景下相比气候条件不变时将分别下降6.3%、15.6%和53.1%。结论: 本研究构建的青冈栎单木混合效应模型具有气候敏感、统计可靠和预测有效等优点,研究结果有助于林业工作者在经营实践中应对未来气候变化所带来的挑战。
中图分类号:
刘帅,李建军,卿东升,朱凯文,马振燕. 气候敏感的青冈栎单木胸径生长模型[J]. 林业科学, 2021, 57(1): 95-104.
Shuai Liu,Jianjun Li,Dongsheng Qing,Kaiwen Zhu,Zhenyan Ma. A Climate-Sensitive Individual-Tree DBH Growth Model for Cyclobalanopsis glauca[J]. Scientia Silvae Sinicae, 2021, 57(1): 95-104.
 
												
												表1
林木生长和气候数据统计"
| 数据Data | 变量Variables | 均值Mean | 最大值Max. | 最小值Min. | 标准差SD | 
| 生长数据 Growth data | 树龄Age/a | 41.39 | 54.00 | 33.00 | 7.98 | 
| 胸径DBH/cm | 15.57 | 29.10 | 8.60 | 5.54 | |
| 树高Tree height/m | 12.36 | 16.00 | 7.80 | 2.23 | |
| 材积Volume/m3 | 0.147 | 0.447 | 0.035 | 0.117 | |
| 气候数据 Climatic data | 年平均温度MAT/℃ | 16.65 | 17.10 | 16.35 | 0.24 | 
| 最热月均温MWMT/℃ | 26.81 | 27.40 | 26.15 | 0.36 | |
| 最冷月均温MCMT/℃ | 4.48 | 6.60 | 3.05 | 0.72 | |
| MWMT和MCMT温差TD/℃ | 21.14 | 22.50 | 20.25 | 0.99 | |
| 年平均降水MAP/mm | 1 457.22 | 1 592.00 | 1 276.20 | 112.71 | |
| 干燥指数AHM | 10.92 | 11.86 | 10.20 | 0.53 | 
 
												
												表附表 1
5种常用生长方程的比较①"
| 生长方程Growth equations | AIC | BIC | LogLik | RSS | MRE | RMSE | 
| Mitscherlich | 1 072.084 | 1 082.526 | -533.042 2 | 1 193.661 3 | 0.263 8 | 2.234 8 | 
| Gomperz | 1 083.415 | 1 097.338 | -537.707 7 | 1 240.984 0 | 0.253 0 | 2.278 7 | 
| Korf | 1 074.142 | 1 088.064 | -533.070 8 | 1 193.945 8 | 0.267 8 | 2.235 1 | 
| Richards | — | — | — | — | — | — | 
| Logistic | 1 095.954 | 1 109.877 | -543.977 0 | 1 307.541 2 | 0.262 5 | 2.339 0 | 
 
												
												表附表 2
15个非线性混合效应生长模型的比较①"
| 编号 ID | 混合效应参数 Mixed-effects parameter | AIC | BIC | LogLik | RSS | MRE | RMSE | 
| N1 | λ00+γ00 | 606.936 1 | 627.820 0 | -297.468 1 | 109.447 1 | 0.160 0 | 0.676 7 | 
| N2 | λ01+γ01 | 620.950 2 | 641.834 0 | -304.475 1 | 116.773 9 | 0.161 2 | 0.699 0 | 
| N3 | λ10+γ10 | — | — | — | — | — | — | 
| N4 | λ11+γ11 | — | — | — | — | — | — | 
| N5 | λ00+γ00, λ01+γ01 | — | — | — | — | — | — | 
| N6 | λ00+γ00, λ10+γ10 | — | — | — | — | — | — | 
| N7 | λ00+γ00, λ11+γ11 | 608.264 0 | 636.109 1 | -296.132 0 | 108.175 2 | 0.159 4 | 0.672 8 | 
| D8 | λ01+γ01, λ10+γ10 | — | — | — | — | — | — | 
| D9 | λ01+γ01, λ11+γ11 | — | — | — | — | — | — | 
| N10 | λ10+γ10, λ11+γ11 | — | — | — | — | — | — | 
| N11 | λ00+γ00, λ01+γ01, λ10+γ10 | 582.217 8 | 620.504 9 | -280.108 9 | 57.733 2 | 0.139 1 | 0.491 5 | 
| N12 | λ00+γ00, λ01+γ01, λ11+γ11 | 614.266 1 | 652.553 1 | -296.133 0 | 108.172 8 | 0.159 4 | 0.672 8 | 
| N13 | λ00+γ00, λ10+γ10, λ11+γ11 | 614.275 6 | 652.562 7 | -296.137 8 | 108.162 9 | 0.159 4 | 0.672 7 | 
| N14 | λ01+γ01, λ10+γ10, λ11+γ11 | — | — | — | — | — | — | 
| N15 | λ00+γ00, λ01+γ01, λ10+γ10, λ11+γ11 | — | — | — | — | — | — | 
 
												
												表2
非线性混合效应胸径生长模型的参数估计"
| 组成部分 Component | 参数 Parameter | 估计值 Estimation | |
| 固定效应 Fixed-effects | 截距 Intercepts | λ00 | -8.249 7 | 
| λ10 | -0.016 5 | ||
| 协变量 Covariates | λ01 | -6.881 6 | |
| λ11 | 0.001 1 | ||
| 随机效应 Random-effects | 方差 Variances | σγ002 | 1.050 1e-5 | 
| σγ012 | 5.346 7e-1 | ||
| σγ102 | 7.619 6e-3 | ||
| 协方差 Covariances | σγ00×γ01 | 5.389 5e-5 | |
| σγ00×γ10 | -4.640 0e-8 | ||
| σγ01×γ10 | -3.202 3e-2 | ||
 
												
												表3
模型拟合统计比较"
| 评价指标 Indicators | 基础模型 Basic model | 再参数化模型 Re-parameterization model | 混合效应模型 NLME model | 
| AIC | 1 072.084 0 | 1 070.342 0 | 582.217 8 | 
| BIC | 1 082.526 0 | 1 087.745 0 | 620.504 9 | 
| LogLik | -533.042 2 | -530.171 1 | -280.108 9 | 
| RSS | 1 193.661 3 | 1 165.440 9 | 57.733 2 | 
| MRE | 0.263 8 | 0.263 0 | 0.139 1 | 
| RMSE | 2.234 8 | 2.208 2 | 0.491 5 | 
 
												
												表4
不同气候场景下2011—2100年气候变量(MCMT)的预测值"
| 气候场景 Climate scenarios | 最冷月均温MCMT/℃ | ||||
| 均值Mean | 最大值Max. | 最小值Min. | 标准差SD | ||
| 2011—2040 | 当前Current | 4.48 | 6.60 | 3.05 | 0.72 | 
| RCP2.6 | 4.59 | 8.10 | 1.00 | 1.97 | |
| RCP4.5 | 4.73 | 7.50 | 1.10 | 1.76 | |
| RCP8.5 | 5.24 | 8.80 | 0.30 | 1.83 | |
| 2041—2070 | 当前Current | 4.48 | 6.60 | 3.05 | 0.72 | 
| RCP2.6 | 5.64 | 8.70 | -0.50 | 2.03 | |
| RCP4.5 | 6.03 | 9.60 | 3.10 | 1.98 | |
| RCP8.5 | 6.95 | 9.80 | 4.10 | 1.44 | |
| 2071—2100 | 当前Current | 4.48 | 6.60 | 3.05 | 0.72 | 
| RCP2.6 | 5.94 | 9.20 | -2.50 | 2.29 | |
| RCP4.5 | 6.70 | 10.20 | -0.20 | 2.29 | |
| RCP8.5 | 8.56 | 12.20 | 3.70 | 1.93 | |
| 丁增发. 安徽亚热带常绿阔叶林甜槠等4个优势树种的生物量模型及生长模型. 安徽农业大学学报, 2014, 41 (5): 859- 865. | |
| Ding Z F . Biomass and growth models of four major tree species in subtropical evergreen broad-leaved forest in Anhui. Journal of Anhui Agricultural University, 2014, 41 (5): 859- 865. | |
| 梁贵, 项文化, 赵仲辉, 等. 湘中丘陵区石栎-青冈栎常绿阔叶林土壤钾含量空间异质性及其影响因子研究. 中南林业科技大学学报, 2015, 35 (7): 88- 93. | |
| Liang G , Xiang W H , Zhao Z H , et al. Spatial heterogeneity of soil potassium(K)concentration and its affecting factors in a Lithocarpus glaber-Cyclobalanopsis glauca evergreen broadleaved forest in central hilly area of Hunan Province, China. Journal of Central South University of Forestry and Technology, 2015, 35 (7): 88- 93. | |
| 刘洵, 曾思齐, 龙时胜, 等. 湖南省栎类天然次生林胸径地位指数表研制. 森林与环境学报, 2019, 39 (3): 43- 50. | |
| Liu X , Zeng S Q , Long S S , et al. Establishment of a diameter at breast height site index table for natural secondary oak forest in Hunan Province. Journal of Forest and Environment, 2019, 39 (3): 265- 272. | |
| 龙时胜, 曾思齐, 肖化顺, 等.  基于林木生长阶段的青冈栎生长方程研究. 西北林学院学报, 2018, 33 (6): 204- 209. doi: 10.3969/j.issn.1001-7461.2018.06.32 | |
| Long S S ,  Zeng S Q ,  Xiao H S , et al.  Growth equation of Cyclobalanopsis glauca based on forest growth stage. Journal of Northwest Forestry University, 2018, 33 (6): 204- 209. doi: 10.3969/j.issn.1001-7461.2018.06.32 | |
| 余黎, 雷相东, 王雅志, 等. 基于广义可加模型的气候对单木胸径生长的影响研究. 北京林业大学学报, 2014, 36 (5): 22- 32. | |
| Yu L , Lei X D , Wang Y Z , et al. Impact of climate on individual tree radial growth based on generalized additive model. Journal of Beijing Forestry University, 2014, 36 (5): 22- 32. | |
| 周生祥, 虞洪波. 树干解析各龄阶树高计算方法的比较与分析. 云南林业调查规划, 1989, (4): 21- 27. | |
| Zhou S X , Yu H B . Comparison and analysis of tree height calculation methods for tree trunk analysis of different age orders. Forest Inventory and Planning, 1989, (4): 21- 27. | |
| Aubry-Kientz M ,  Moran E V .  Climate impacts on tree growth in the Sierra Nevada. Forests, 2017, 8 (11): 414. doi: 10.3390/f8110414 | |
| Bates L D M .  Nonlinear mixed effects models for repeated measures data. Biometrics, 1990, 46 (3): 673- 687. doi: 10.2307/2532087 | |
| Battles J ,  Robards T ,  Das A , et al.  Climate change impacts on forest growth and tree mortality: a data-driven modeling study in the mixed-conifer forest of the Sierra Nevada, California. Climatic Change, 2008, 87 (1): 193- 213. doi: 10.1007/s10584-007-9358-9 | |
| Biging G S , Dobbertin M . Evaluation of competition indices in individual tree growth models. Forest Science, 1995, 41 (2): 360- 377. | |
| Bravo-Oviedo A ,  Tomé M ,  Bravo F , et al.  Dominant height growth equations including site attributes in the generalized algebraic difference approach. Canadian Journal of Forest Research, 2008, 38, 2348- 2358. doi: 10.1139/X08-077 | |
| Bronson D R ,  Gower S T ,  Tanner M , et al.  Effect of ecosystem warming on boreal black spruce bud burst and shoot growth. Global Change Biology, 2009, 15 (6): 1534- 1543. doi: 10.1111/j.1365-2486.2009.01845.x | |
| Budhathoki C B , Lynch T B , Guldin J M . Nonlinear mixed modeling of basal area growth for shortleaf pine. Forest Ecology and Management, 2008, 255 (8): 3440- 3446. | |
| Chiang J M ,  Iverson L R ,  Prasad A , et al.  Effects of climate change and shifts in forest composition on forest net primary production. Journal of Integrative Plant Biology, 2008, 50 (11): 1426- 1439. doi: 10.1111/j.1744-7909.2008.00749.x | |
| Cortini F ,  Filipescu C N ,  Groot A , et al.  Regional models of diameter as a function of individual tree attributes, climate and site characteristics for six major tree species in Alberta, Canada. Forests, 2011, 2 (4): 814- 831. doi: 10.3390/f2040814 | |
| Cudeck R ,  Klebe K J .  Multiphase mixed-effects models for repeated measures data. Psychological Methods, 2002, 7 (1): 41- 63. doi: 10.1037/1082-989X.7.1.41 | |
| Dorado F C , Diéguez-Aranda U , Anta M B , et al. A generalized height-diameter model including random components for radiata pine plantations in northwestern Spain. Forest Ecology and Management, 2006, 229 (1/3): 202- 213. | |
| Fang Z , Bailey R L . Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments. Forest Science, 2001, 47 (3): 287- 300. | |
| Huang J G ,  Tardif J C ,  Bergeron Y , et al.  Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest. Global Change Biology, 2010, 16, 711- 731. doi: 10.1111/j.1365-2486.2009.01990.x | |
| Huang J G ,  Yves B ,  Frank B , et al.  Impact of future climate on radial growth of four major boreal tree species in the eastern Canadian boreal forest. PLOS One, 2013, 8 (2): e56758. doi: 10.1371/journal.pone.0056758 | |
| Huang J ,  Kindermann G ,  Ghosh S .  Empirical analysis of climate change impact on loblolly pine plantations in the southern United States. Natural Resource Modeling, 2011, 24 (4): 445- 476. doi: 10.1111/j.1939-7445.2011.00098.x | |
| Intergovernmental Panel on Climate Change(IPCC). 2001. Synthesis report//Watson R T, Albritton D L, Baker T, et al. eds.A contribution of working groups Ⅰ, Ⅱ, and Ⅲ to the third assessment report of intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, 398. | |
| Jordan L , Daniels R F , Iii A C , et al. Multilevel nonlinear mixed-effects models for the modeling of earlywood and latewood microfibril angle. Forest Science, 2005, 51 (4): 357- 371. | |
| Latta G , Temesgen H , Adams D , et al. Analysis of potential impacts of climate change on forests of the United States Pacific Northwest. Forest Ecology and Management, 2010, 259 (4): 729. | |
| Lo Y H ,  Blanco J A ,  Seely B , et al.  Relationships between climate and tree radial growth in interior British Columbia, Canada. Forest Ecology and Management, 2010, 259 (5): 932- 942. doi: 10.1016/j.foreco.2009.11.033 | |
| Manso R ,  Morneau F ,  Ningre F , et al.  Effect of climate and intra-and inter-specific competition on diameter increment in beech and oak stands. Forestry, 2015, 88 (5): 540- 551. doi: 10.1093/forestry/cpv020 | |
| Monserud R A ,  Yang Y ,  Huang S , et al.  Potential change in lodgepole pine site index and distribution under climatic change in Alberta. Canadian Journal of Forest Research, 2008, 38 (2): 343- 352. doi: 10.1139/X07-166 | |
| Nigh G ,  Smith W .  Effect of climate on lodgepole pine stem taper in British Columbia, Canada. Forestry, 2012, 85 (5): 579- 587. doi: 10.1093/forestry/cps063 | |
| Oboite F O ,  Comeau P G .  Competition and climate influence growth of black spruce in western boreal forests. Forest Ecology and Management, 2019, 443, 84- 94. doi: 10.1016/j.foreco.2019.04.017 | |
| Parmesan C ,  Yohe G .  A globally coherent fingerprint of climate change impacts across natural systems. Nature, 2003, 421 (6918): 37- 42. doi: 10.1038/nature01286 | |
| Peng C .  Growth and yield models for uneven-aged stands: past, present and future. Forest Ecology and Management, 2000, 132, 259- 279. doi: 10.1016/S0378-1127(99)00229-7 | |
| Pokharel B ,  Froese R E .  Representing site productivity in the basal area increment model for FVS-Ontario. Forest Ecology and Management, 2009, 258 (5): 657- 666. doi: 10.1016/j.foreco.2009.04.040 | |
| Porté A , Bartelink H H . Modelling mixed forest growth: a review of models for forest management. Ecological Modelling, 2002, 150 (1): 141- 188. | |
| Rubén M ,  Morneau F ,  Ningre F , et al.  Effect of climate and intra- and inter-specific competition on diameter increment in beech and oak stands. Forestry, 2015, 88 (5): 540- 551. doi: 10.1093/forestry/cpv020 | |
| Saud P , Lynch T B , Cram D S , et al. An Annual basal area growth model with multiplicative climate modifier fitted to longitudinal data for shortleaf pine. Forestry, 2019, 5, 1- 16. | |
| Scheller R M , Mladenoff D J . Simulated effects of climate change, fragmentation, and inter-specific competition on tree species migration in northern Wisconsin, USA. Climate Research, 2008, 36 (3): 191- 202. | |
| Sharma M ,  Subedi N ,  Ter-Mikaelian M , et al.  Modeling climatic effects on stand height/site index of plantation-grown jack pine and black spruce trees. Forest Science, 2015, 61 (1): 25- 34. doi: 10.5849/forsci.13-190 | |
| Sharma M ,  Parton J .  Climatic effects on site productivity of red pine plantations. Forest Science, 2018, 64 (5): 544- 554. doi: 10.1093/forsci/fxy013 | |
| Sonia C ,  Fernando G .  An empirical mixed model to quantify climate influence on the growth of Pinus halepensis Mill. stands in South-Eastern Spain. Forest Ecology and Management, 2012, 284, 59- 68. doi: 10.1016/j.foreco.2012.07.030 | |
| Subedi N ,  Sharma M .  Individual-tree diameter growth models for black spruce and jack pine plantations in northern Ontario. Forest Ecology and Management, 2011, 261 (11): 2140- 2148. doi: 10.1016/j.foreco.2011.03.010 | |
| Subedi N ,  Sharma M .  Climate-diameter growth relationships of black spruce and jack pine trees in boreal Ontario, Canada. Global Change Biology, 2013, 19 (2): 505- 516. doi: 10.1111/gcb.12033 | |
| Temperli C ,  Bugmann H ,  Elkin C .  Adaptive management for competing forest goods and services under climate change. Ecological Applications, 2012, 22 (8): 2065- 2077. doi: 10.1890/12-0210.1 | |
| Timilsina N ,  Staudhammer C L .  Individual tree-based diameter growth model of slash pine in Florida using nonlinear mixed modeling. Forest Science, 2013, 59 (1): 27- 37. doi: 10.5849/forsci.10-028 | |
| Trasobares A ,  Zingg A ,  Walthert L , et al.  A climate-sensitive empirical growth and yield model for forest management planning of even-aged beech stands. European Journal of Forest Research, 2016, 135 (2): 263- 282. doi: 10.1007/s10342-015-0934-7 | |
| Vuuren D P V , Edmonds J , Kainuma M , et al. The representative concentration pathways: an overview. Climatic Change, 2011, 109 (1/2): 5- 31. | |
| Wang Y ,  LeMay V M ,  Baker T G .  Modelling and prediction of dominant height and site index of Eucalyptus globulus plantations using a nonlinear mixed-effects model approach. Canadian Journal of Forest Research, 2007, 37 (8): 1390- 1403. doi: 10.1139/X06-282 | |
| Wang T , Wang G , Innes J , et al. Climatic niche models and their consensus projections for future climates for four major forest tree species in the Asia-Pacific region. Forest Ecology and Management, 2015, 360, 357- 366. | |
| Wang T ,  Wang G ,  Innes J L , et al.  ClimateAP: an application for dynamic local downscaling of historical and future climate data in Asia Pacific. Frontiers of Agricultural Science and Engineering, 2017, 4 (4): 448- 458. doi: 10.15302/J-FASE-2017172 | |
| Wang W W ,  Chen X Y ,  Zeng W S , et al.  Development of a mixed-effects individual-tree basal area increment model for Oaks(Quercus spp. )considering forest structural diversity. Forests, 2019, 10, 474. doi: 10.3390/f10060474 | |
| Yang Y ,  Huang S .  Comparison of different methods for fitting nonlinear mixed forest models and for making predictions. Canadian Journal of Forest Research, 2011, 41 (8): 1671- 1686. doi: 10.1139/x11-071 | |
| Yang Y ,  Huang S .  On the statistical and biological behaviors of nonlinear mixed forest models. European Journal of Forest Research, 2013, 132 (5/6): 727- 736. doi: 10.1007/s10342-013-0705-2 | |
| Zang H ,  Lei X D ,  Ma W , et al.  Spatial heterogeneity of climate change effects on dominant height of larch plantations in northern and northeastern China. Forests, 2016, 7 (12): 151- 167. doi: 10.3390/f7070151 | |
| Zhang X ,  He X ,  Li J , et al.  Temperature reconstruction(1750-2008)from dahurian larch tree-rings in an area subject to permafrost in inner Mongolia, northeast China. Climate Research, 2011, 47 (3): 151- 159. doi: 10.3354/cr00999 | |
| Zhu G ,  Hu S ,  Chhin S , et al.  Modelling site index of Chinese fir plantations using a random effects model across regional site types in Hunan Province, China. Forest Ecology and Management, 2019, 446, 143- 150. doi: 10.1016/j.foreco.2019.05.039 | 
| [1] | 刘秀红,姜春前,徐睿,何潇,齐梦娟. 相容性单木生物量模型估计方法的比较——以青冈栎为例[J]. 林业科学, 2020, 56(9): 164-173. | 
| [2] | 刘宁,丁昌俊,李波,丁密,苏晓华,黄秦军. 12个欧美杨无性系生长初期基因型与环境的互作效应[J]. 林业科学, 2020, 56(8): 63-72. | 
| [3] | 张雪,钟全林,李宝银,姚湘明,徐朝斌,程栋梁,郑跃芳,余华. 翅荚木同龄林林木叶片性状与胸径生长关系[J]. 林业科学, 2020, 56(5): 168-175. | 
| [4] | 郑聪慧, 张鸿景, 王玉忠, 代剑锋, 党磊, 杜子春, 刘建婷, 高运茹. 基于BLUP和GGE双标图的华北落叶松家系区域试验分析[J]. 林业科学, 2019, 55(8): 73-83. | 
| [5] | 张雄清, 王翰琛, 鲁乐乐, 陈传松, 段爱国, 张建国. 杉木单木枯损率与初植密度、竞争和气候因子的关系[J]. 林业科学, 2019, 55(3): 72-78. | 
| [6] | 李春明,赵丽芳,李利学. 基于混合效应模型和零膨胀模型方法的蒙古栎林分水平枯损模型[J]. 林业科学, 2019, 55(11): 27-36. | 
| [7] | 王冬至, 张冬燕, 李永宁, 张志东, 李大勇, 黄选瑞. 基于贝叶斯法的针阔混交林树高与胸径混合效应模型[J]. 林业科学, 2019, 55(11): 85-94. | 
| [8] | 陈珠琳,王雪峰,管青军. 幼龄降香黄檀冠层叶片全磷含量的无损估计[J]. 林业科学, 2019, 55(11): 145-152. | 
| [9] | 祖笑锋, 李秋实, 倪成才, 覃先林, Nigh Gorden. 非线性混合效应生长模型的拟合、随机效应预测和应变量预测间对应关系[J]. 林业科学, 2016, 52(10): 72-79. | 
| [10] | 祖笑锋, 倪成才, Gorden Nigh, 覃先林. 基于混合效应模型及EBLUP预测美国黄松林分优势木树高生长过程[J]. 林业科学, 2015, 51(3): 25-33. | 
| [11] | 符利勇;张会儒;李春明;唐守正. 非线性混合效应模型参数估计方法分析[J]. , 2013, 49(1): 114-119. | 
| [12] | 李春明. 基于混合效应模型的杉木人工林蓄积联立方程系统[J]. 林业科学, 2012, 48(6): 80-88. | 
| [13] | 符利勇;李永慈;李春明;唐守正. 利用2种非线性混合效应模型(2水平) 对杉木林胸径生长量的分析[J]. 林业科学, 2012, 48(5): 36-43. | 
| [14] | 李春明. 基于两层次线性混合效应模型的杉木林单木胸径生长量模型[J]. 林业科学, 2012, 48(3): 66-73. | 
| [15] | 陈秋夏;廖亮;郑坚;王金旺;李效文;夏海涛;马履一. 光照强度对青冈栎容器苗生长和生理特征的影响[J]. 林业科学, 2011, 47(12): 53-59. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||