|
蔡绍祥, 黄燕萍, 李朱锋, 等. 木材化学成分对细胞壁纵向黏弹性的影响. 森林工程, 2022, 38 (3): 54- 62.
|
|
Cai S X, Huang Y P, Li Z F, et al. Effect of wood chemical composition on longitudinal viscoelastic properties of cell walls. Forest Engineering, 2022, 38 (3): 54- 62.
|
|
陈 晨, 程 旭, 王立朝, 等. 改性纳米复合防腐剂对木材耐腐性能的研究. 森林工程, 2022, 38 (6): 61- 68.
|
|
Chen C, Cheng X, Wang L C, et al. Study on wood decay resistance of modified nanocomposite preservatives. Forest Engineering, 2022, 38 (6): 61- 68.
|
|
池玉杰, 闫洪波. 红平菇木质素降解酶系统漆酶、锰过氧化物酶及木质素过氧化物酶的检测. 林业科学, 2009, 45 (12): 154- 158.
doi: 10.11707/j.1001-7488.20091227
|
|
Chi Y J, Yan H B. Detection on laccase, manganese peroxidase and lignin peroxidase in ligninolytic enzymes of Pleurotus djamor. Scientia Silvae Sinicae, 2009, 45 (12): 154- 158.
doi: 10.11707/j.1001-7488.20091227
|
|
方 旋, 温敬伟, 陈 粤, 等. 南越国宫署遗址出土木质水槽原位保存环境下的真菌多样性. 林业科学, 2021, 57 (7): 131- 141.
doi: 10.11707/j.1001-7488.20210714
|
|
Fang X, Wen J W, Chen Y, et al. Fungal diversity of wooden flume unearthed from Nanyue National Palace site under in situ preservation environment. Scientia Silvae Sinicae, 2021, 57 (7): 131- 141.
doi: 10.11707/j.1001-7488.20210714
|
|
郭 梅, 蒲 军, 梁 鹏, 等. 白腐菌Trametes versicolor产漆酶发酵条件的优化. 食品研究与开发, 2006, 27 (6): 9- 12.
doi: 10.3969/j.issn.1005-6521.2006.06.004
|
|
Guo M, Pu J, Liang P, et al. Studies on fermentation conditions for laccase production from white-rot fungi Trametes versicolor. Food Research and Development, 2006, 27 (6): 9- 12.
doi: 10.3969/j.issn.1005-6521.2006.06.004
|
|
荚 荣, 汤必奎, 张晓宾, 等. 藜芦醇和吐温80对白腐菌产木质素降解酶的影响及在偶氮染料脱色中的作用. 生物工程学报, 2004, 20 (2): 302- 305.
doi: 10.3321/j.issn:1000-3061.2004.02.029
|
|
Jia R, Tang B K, Zhang X B, et al. Effects of veratryl alcohol and tween 80 on ligninase production and its roles in decolorization of azo dyes by white-rot basidiomycete PM2. Chinese Journal of Biotechnology, 2004, 20 (2): 302- 305.
doi: 10.3321/j.issn:1000-3061.2004.02.029
|
|
李翠珍, 文湘华. 白腐真菌F2的生长及产木质素降解酶特性的研究. 环境科学学报, 2005, 25 (2): 226- 231.
doi: 10.3321/j.issn:0253-2468.2005.02.017
|
|
Li C Z, Wen X H. Characterization of growth and ligninolytic enzymes production of a white rot fungus F2. Acta Scientiae Circumstantiae, 2005, 25 (2): 226- 231.
doi: 10.3321/j.issn:0253-2468.2005.02.017
|
|
李慧蓉. 2005. 白腐真菌生物学和生物技术. 北京: 化学工业出版社.
|
|
Li H R. 2005. Biology and biotechnology of white rot fungi. Beijing: Chemical Industry Press. [in Chinese]
|
|
李旭东, 荚 荣, 程晓滨, 等. 锰过氧化物酶的固态发酵及其对染料的脱色作用. 环境科学学报, 2008, 28 (3): 490- 495.
doi: 10.3321/j.issn:0253-2468.2008.03.013
|
|
Li X D, Jia R, Cheng X B, et al. Solid-state fermentation of MnP and decolorization of dyes. Acta Scientiae Circumstantiae, 2008, 28 (3): 490- 495.
doi: 10.3321/j.issn:0253-2468.2008.03.013
|
|
王 东, 林兰英, 傅 峰. 木材多尺度结构差异对其破坏影响的研究进展. 林业科学, 2020, 56 (8): 141- 147.
doi: 10.11707/j.1001-7488.20200816
|
|
Wang D, Lin L Y, Fu F. The effects of multiscale structure differences on wood fracture: a review. Scientia Silvae Sinicae, 2020, 56 (8): 141- 147.
doi: 10.11707/j.1001-7488.20200816
|
|
王海宽, 路福平. 培养条件对甲醇毕赤酵母异源表达木质素过氧化物酶的影响. 天津科技大学学报, 2007, 22 (1): 33- 36.
doi: 10.3969/j.issn.1672-6510.2007.01.009
|
|
Wang H K, Lu F P. Effect of cultivation condition on heterologous expression of lignin peroxidase in Pichia methanolica. Journal of Tianjin University of Science & Technology, 2007, 22 (1): 33- 36.
doi: 10.3969/j.issn.1672-6510.2007.01.009
|
|
王宜磊, 朱 陶, 邓振旭. 愈创木酚法快速筛选漆酶产生菌. 生物技术, 2007, 17 (2): 40- 42.
doi: 10.3969/j.issn.1004-311X.2007.02.014
|
|
Wang Y L, Zhu T, Deng Z X. Using O-methoxyphenol to fast screen laccase produced fungus. Biotechnology, 2007, 17 (2): 40- 42.
doi: 10.3969/j.issn.1004-311X.2007.02.014
|
|
吴柯军, 闫绍鹏, 卢 宏, 等. 不同木质底物诱导下白囊耙齿菌胞外木质纤维素酶活性和胞内蛋白质组的差异. 林业科学, 2016, 52 (8): 157- 166.
|
|
Wu K J, Yan S P, Lu H, et al. Difference in the activity of extracellular lignocellulolytic enzymes and the intracellular proteome of Irpex lacteus induced by different wood substrates. Scientia Silvae Sinicae, 2016, 52 (8): 157- 166.
|
|
Biko O D V, Viljoen-Bloom M, van Zyl W H. Microbial lignin peroxidases: applications, production challenges and future perspectives. Enzyme and Microbial Technology, 2020, 141, 109669.
doi: 10.1016/j.enzmictec.2020.109669
|
|
Birhanlı E, Ali Noma S A, Boran F, et al. Design of laccase–metal–organic framework hybrid constructs for biocatalytic removal of textile dyes. Chemosphere, 2022, 292, 133382.
doi: 10.1016/j.chemosphere.2021.133382
|
|
Chi Y J, Hatakka A, Maijala P. 2007. Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin-degrading enzymes? International Biodeterioration & Biodegradation, 59(1): 32−39.
|
|
Dashtban M, Schraft H, Qin W S. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. International Journal of Biological Sciences, 2009, 5 (6): 578- 595.
|
|
Do N H, Pham H H, Le T M, et al. The novel method to reduce the silica content in lignin recovered from black liquor originating from rice straw. Scientific Reports, 2020, 10 (1): 21263.
doi: 10.1038/s41598-020-77867-5
|
|
Fonseca M I, Fariña J I, Castrillo M L, et al. Biopulping of wood chips with Phlebia brevispora BAFC 633 reduces lignin content and improves pulp quality. International Biodeterioration & Biodegradation, 2014, 90, 29- 35.
|
|
Karkera K, Pendse A, Aruna K. Studies on biosurfactant production by Pseudomonas aeruginosa R2 isolated from oil contaminated soil sample. Asian Journal of Biological Sciences, 2012, 7 (2): 123- 129.
|
|
Kundu P, Manna B, Majumder S, et al. Species-wide metabolic interaction network for understanding natural lignocellulose digestion in termite gut microbiota. Scientific Reports, 2019, 9 (1): 16329.
doi: 10.1038/s41598-019-52843-w
|
|
Levin L, Villalba L, Da Re V, et al. Comparative studies of loblolly pine biodegradation and enzyme production by Argentinean white rot fungi focused on biopulping processes. Process Biochemistry, 2007, 42 (6): 995- 1002.
doi: 10.1016/j.procbio.2007.03.008
|
|
Lin C W, Lai C Y, Liu S H, et al. Enhancing bioelectricity generation and removal of copper in microbial fuel cells with a laccase-catalyzed biocathode. Journal of Cleaner Production, 2021, 298, 126726.
doi: 10.1016/j.jclepro.2021.126726
|
|
Lubbers R J M, Dilokpimol A, Visser J, et al. A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi. Biotechnology Advances, 2019, 37 (7): 107396.
doi: 10.1016/j.biotechadv.2019.05.002
|
|
Mboowa D. A review of the traditional pulping methods and the recent improvements in the pulping processes. Biomass Conversion and Biorefinery, 2024, 14 (1): 1- 12.
doi: 10.1007/s13399-020-01243-6
|
|
Nagpal R, Bhardwaj N K, Mishra O P, et al. Cleaner bio-pulping approach for the production of better strength rice straw paper. Journal of Cleaner Production, 2021, 318, 128539.
doi: 10.1016/j.jclepro.2021.128539
|
|
Nakazawa T, Morimoto R, Wu H L, et al. Dominant effects of gat1 mutations on the ligninolytic activity of the white-rot fungus Pleurotus ostreatus. Fungal Biology, 2019, 123 (3): 209- 217.
doi: 10.1016/j.funbio.2018.12.007
|
|
Singh P, Sulaiman O, Hashim R, et al. Biopulping of lignocellulosic material using different fungal species: a review. Reviews in Environmental Science and Bio/Technology, 2010, 9 (2): 141- 151.
doi: 10.1007/s11157-010-9200-0
|
|
Sun S N, Sun S L, Cao X F, et al. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource Technology, 2016, 199, 49- 58.
doi: 10.1016/j.biortech.2015.08.061
|
|
Taha M, Shahsavari E, Al-Hothaly K, et al. Enhanced biological straw saccharification through coculturing of lignocellulose-degrading microorganisms. Applied Biochemistry and Biotechnology, 2015, 175 (8): 3709- 3728.
doi: 10.1007/s12010-015-1539-9
|
|
Wang J H, Li L L, Xu H M, et al. Construction of a fungal consortium for effective degradation of rice straw lignin and potential application in bio-pulping. Bioresource Technology, 2022, 344, 126168.
doi: 10.1016/j.biortech.2021.126168
|
|
Xu X Y, Shen X T, Yuan X J, et al. Metabolomics investigation of an association of induced features and corresponding fungus during the co-culture of Trametes versicolor and Ganoderma applanatum. Frontiers in Microbiology, 2018, 8, 2647.
doi: 10.3389/fmicb.2017.02647
|
|
Yao L, Zhu L P, Xu X Y, et al. Discovery of novel xylosides in co-culture of basidiomycetes Trametes versicolor and Ganoderma applanatum by integrated metabolomics and bioinformatics. Scientific Reports, 2016, 6, 33237.
doi: 10.1038/srep33237
|
|
Zanellati A, Spina F, Bonaterra M, et al. Screening and evaluation of phenols and furans degrading fungi for the biological pretreatment of lignocellulosic biomass. International Biodeterioration & Biodegradation, 2021, 161, 105246.
|