李海峰, 张建州, 游志胜. 2003.基于类距离的可分离性判据. 计算机工程与应用, 39(26):97-99. (Li H F, Zhang J Z, You Z S. 2003. A separative criterion based on class distance. Computer Engineering and Applications, 39(26):97-99. [in Chinese]) 潘琛, 林怡, 陈映鹰. 2010. 基于多特征的遥感影像决策树分类. 光电子激光, 21(5):731-736. (Pan C, Lin Y, Chen Y Y. 2010. Decision tree classification of remote sensing images based on multi-feature. Journal of Optoelectronics. Laser, 21(5):731-736. [in Chinese]) 齐敏, 李大健, 郝重阳. 2009. 模式识别导论北京:清华大学出版社. (Qi M, Li D J, Hao C Y. 2009. Pattern recognition theory. Beijing:Tsinghua University Press. [in Chinese]) 田庆久, 闵祥军. 1998.植被指数研究进展. 地球科学进展, 13(4):10-16. (Tian Q J, Min X J. 1998. Advances in study on vegetation indices. Advance in Earth Sciences, 13(4):10-16.[in Chinese]) 夏道平, 付元元, 王纪华,等. 2016.分散矩阵特征选择方法改进及在高光谱影像植被分类中的应用. 农业工程学报, 32(21):196-201. (Xia D P, Fu Y Y, Wang J H, et al. 2016. Improved scatter-matrix-based feature selection method for vegetation classification of hyperspectral image. Transactions of the Chinese Society of Agricultural Engineering, 32(21):196-201. [in Chinese]) 杨凯歌, 冯学智, 肖鹏峰, 等. 2016.优化子空间SVM集成的高光谱图像分类. 遥感学报, 20(3):409-419. (Yang K G, Feng X Z, Xiao P F, et al. 2016. Optimal subspace ensemble with SVM for hyperspectral image classification. Journal of Remote Sensing, 20(3):409-419. [in Chinese]) 杨校军, 陈雨时, 张晔. 2008. Flaash模型输入参数对校正结果的影响. 遥感信息, (6):32-37. (Yang X J, Chen Y S, Zhang Y. 2008. Effect on atmospheric correction by inputting parameters of Flaash model. Remote Sensing Information, (6):32-37. [in Chinese]) 章志都, 梁冠巍, 董建文,等. 2010.基于植被分布因子主成分分析的福建省植被区划. 东北林业大学学报, 38(3):61-65. (Zhang Z D, Liang G W, Dong J W, et al. 2010.Vegetation regionalization for Fujian Province based on principal component analysis of factors affecting vegetation distribution. Journal of Northeast Forestry University, 38(3):61-65. [in Chinese]) Bannari A, Morin D, Bonn F, et al. 1995.A review of vegetation indices. Remote Sensing Reviews, 13(1/2):95-120. Bermejo P, Gámez J A, Puerta J M. 2011.A GRASP algorithm for fast hybrid (filter-wrapper) feature subset selection in high-dimensional datasets. Pattern Recognition Letters, 32(5):701-711. Bruzzone L, Pellegretti P, Roli F. 1995. An experimental analysis of the use of grey level co-occurrence statistics for SAR-image classification. Geoscience and Remote Sensing IEEE International Symposium. Chen D, Stow D A, Gong P. 2004.Examining the effect of spatial resolution and texture window size on classification accuracy:an urban environment case. International Journal of Remote Sensing, 25(11):2177-2192. Congalton R G. 1991.A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1):35-46. Cooley T, Anderson G P, Felde G W, et al. 2002. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. Geoscience and Remote Sensing Symposium, 2002 IGARSS'02 2002 IEEE International, 1414-1418. Dian Y, Li Z, Pang Y. 2015.Spectral and texture features combined for forest tree species classification with airborne hyperspectral imagery. Journal of the Indian Society of Remote Sensing, 43(1):101-107. Fang L, Zhao H, Wang P, et al. 2015.Feature selection method based on mutual information and class separability for dimension reduction in multidimensional time series for clinical data. Biomedical Signal Processing & Control, 21(1):82-89. Garg P K, Jazayeri M. 1996.Process-centered software engineering environments. IEEE Computer Society Press. Gong P, Marceau D J, Howarth P J. 1992.A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data. Remote Sensing of Environment, 40(2):137-151. Haralick R M, Shanmugam K, Dinstein I H. 1973.Textural features for image classification. Transactions on Systems, Man and Cybernetics, 3(6):610-621. Justice C O, Vermote E, Townshend J R G, et al. 1998.The moderate resolution imaging spectroradiometer (MODIS):land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing, 36(4):1228-1249. Landgrebe A D. 2005. Signal theory methods in multispectral remote sensing. J Wiley. Landgrebe D A. 2003. Signal theory methods in multispectral remote sensing. New Jersey:John Wiley and Sons. Li G, Lu D, Moran E, et al. 2012.A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region. ISPRS Journal of Photogrammetry and Remote Sensing, 70(3):26-38. Li G, Lu D, Moran E, et al. 2011.Land-cover classification in a moist tropical region of Brazil with Landsat Thematic Mapper imagery. International Journal of Remote Sensing, 32(23):8207-8230. Lu D, Batistella M, Moran E, et al. 2008.A comparative study of Landsat TM and SPOT HRG images for vegetation classification in the Brazilian Amazon. Photogrammetric Engineering & Remote Sensing, 74(3):311-321. Lu D, Mausel P, Brondízio E, et al. 2004.Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. Forest Ecology and Management, 198(1/3):149-167. Lu D, Weng Q. 2005.Urban classification using full spectral information of Landsat ETM+ imagery in Marion County, Indiana. Photogrammetric Engineering & Remote Sensing, 71(11):1275-1284. Mausel P, Wu Y, Li Y, et al. 1993.Spectral identification of successional stages following deforestation in the Amazon. Geocarto International, 8(4):61-71. Mausel P W. 1990.Optimum band selection for supervised classification of multispectral data. Photogrammetric Engineering & Remote Sensing, 56(1):55-60. Peng H, Long F, Ding C. 2005.Feature selection based on mutual information:criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis & Machine Intelligence, 27(8):1226-1238. Price K P, Guo X, Stiles J M. 2002.Optimal Landsat TM band combinations and vegetation indices for discrimination of six grassland types in eastern Kansas. International Journal of Remote Sensing, 23(23):5031-5042. Rao P V N, Sai M V R S, Sreenivas K, et al. 2002.Textural analysis of IRS-1D panchromatic data for land cover classification. International Journal of Remote Sensing, 23(17):3327-3345. Viña A, Gitelson A A, Nguy-Robertson A L, et al. 2011.Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment, 115(12):3468-3478. |