白黎娜, 李增元, 陈尔学, 等. 2003. 干涉测量土地利用影像分类决策树法森林识别研究. 林业科学, 39(1):86-90. (Bai L N, Li Z Y, Chen E X, et al. 2003. A study on forest identification with the decision tree for interferometric land-use image. Scientia Silvae Sinicae, 39 (1):86-90.[in Chinese]) 王馨爽, 陈尔学, 李增元, 等. 2014. 多时相双极化SAR影像林地类型分类方法. 林业科学, 50(3):83-91. (Wang X S, Chen E X, Li Z Y, et al. 2014. Multi-temporal and dual-polarization SAR for forest land type classification. Scientia Silvae Sinicae, 50 (3):83-91.[in Chinese]) Baatz M, Benz U, Dehghani S, et al. 2004.eCognition User Guide 4.Munich:Definiens Imaging. Ban Y, Hu H, Rangel I M. 2010. Fusion of Quickbird MS and RADARSAT SAR data for urban land-cover mapping:object-based and knowledge-based approach. International Journal of Remote Sensing, 31(6):1391-1410. Benz U C, Hofmann P, Willhauck G, et al. 2004. Multi-resolution,object-oriented fuzzy analysis of remote sensing data for GIS-ready information. International Journal of Photogrammetry & Remote Sensing, 58(3/4):239-258. Cho M A, Mathieu R, Asner G P, et al. 2012.Mapping tree species composition in South African savannas using an integrated airborne spectral and LiDAR system. Remote Sensing of Environment, 125(10):214-226. Clark M L, Roberts D A, Clark D B. 2005. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sensing of Environment, 96(3):375-398. Clinton N, Holt A, Scarborough J, et al. 2010. Accuracy assessment measures for object-based image segmentation goodness. Photogrammetric Engineering and Remote Sensing, 76(3):289-299. Colstoun E C B D, Story M H, Thompson C, et al. 2003. National park vegetation mapping using multi-temporal Landsat 7 data and a decision tree classifier. Remote Sensing of Environment, 85(3):316-327. Comaniciu D, Meer P. 2002. Mean shift:a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis & Machine Intelligence, 24(5):603-619. Ecognition B. 2010. User guide. Definiens Imaging GmbH. Sunnyvale:Trimble. Gitelson A A, Kaufman Y J, Merzlyak M N. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3):289-298. Goodenough D G, Dyk A, Niemann K O, et al. 2003. Processing hyperion and ALI for forest classification. IEEE Transactions on Geoscience & Remote Sensing, 41(6):1321-1331. Hossain S M Y, Caspersen J P. 2012. In-situ measurement of twig dieback and regrowth in mature Acer saccharum trees. Forest Ecology & Management, 270(4):183-188. Immitzer M, Atzberger C, Koukal T. 2012. Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data. Remote Sensing, 4(9):2661-2693. Im J, Jensen J R, Hodgson M E. 2008. Object-based land cover classification using high-posting-density LIDAR data. GIScience and Remote Sensing, 45(2):209-229. Im J, Jensen J R, Tullis J A. 2007. Object-based change detection using correlation image analysis and image segmentation. International Journal of Remote Sensing, 29(2):399-423. Janssen L L F, Wei F J M. 1994. Accuracy assessment of satellite derived land-cover data:a review. Photogrammetric Engineering & Remote Sensing, 60(4):419-426. Johansen K, Arroyo L A, Phinn S, et al. 2010. Comparison of geo-object based and pixel-based change detection of riparian environments using high spatial resolution multi-spectral imagery. Photogrammetric Engineering and Remote Sensing, 76(2):123-136. Ke Y, Quackenbush L J,Im J.2010.Synergistic use of QuickBird multispectral imagry and LiDAR data for object-based forest species classification.Remote Sensing of Environment,114(6):1141-1154. Kim M, Madden M, Warner T. 2008. Estimation of optimal image object size for the segmentation of forest stands with multispectral IKONOS imagery. Object-Based Image Analysis. Berlin:Springer. Lawrence R L, Wood S D, Sheley R L. 2006. Mapping invasive plants using hyperspectral imagery and breiman cutler classifications (randomForest). Remote Sensing of Environment, 100(3):356-362. Li P, Guo J, Song B, et al. 2011. A multilevel hierarchical image segmentation method for urban impervious surface mapping using very high resolution imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,4(1):103-116. Li D, Zhang G, Wu Z, et al. 2010. An edge embedded marker-based watershed algorithm for high spatial resolution remote sensing image segmentation. IEEE Transactions on Image Processing, 19(10):2781-2787. Liesenberg V, Gloaguen R. 2013. Evaluating SAR polarization modes at L-band for forest classification purposes in Eastern Amazon, Brazil. International Journal of Applied Earth Observation and Geoinformation, 21(1):122-135. Liu Y, Bian L, Meng Y, et al. 2012. Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis. Isprs Journal of Photogrammetry and Remote Sensing, 68(1):144-156. Malahlela O, Cho M A, Mutanga O.2014. Mapping canopy gaps in an indigenous subtropical coastal forest using high-resolution WorldView-2 data. International Journal of Remote Sensing, 35 (17):6397-6417. Malthus R G T J. 2008. LiDAR mapping of canopy gaps in continuous cover forests:a comparison of canopy height model and point cloud based techniques. International Journal of Remote Sensing, 31(5):17-19. Michel J, Youssefi D, Grizonnet M. 2015.Stable mean-shift algorithm and its application to the segmentation of arbitrarily large remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 53(53):952-964. Möller M,Lymburner L,Volk M. 2007.The comparison index:a tool for assessing the accuracy of image segmentation. International Journal of Applied Earth Observation & Geoinformation,9(3):311-321. Mutanga O, Adam E, Cho M A. 2012. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. International Journal of Applied Earth Observation and Geoinformation, 18(1):399-406. Sousa W P. 2004.Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. International Journal of Remote Sensing,25(24):5655-5668. Sun X Y, Du H Q, Han N, et al. 2014. Synergistic use of Landsat TM and SPOT5 imagery for object-based forest classification. Journal of Applied Remote Sensing, 8(1):801-807. Vapnik V N. 2000. The nature of statistical learning theory. Berlin:Springer Verlag. Vepakomma U, St-Onge B, Kneeshaw D. 2008. Spatially explicit characterization of boreal forest gap dynamics using multi-temporal lidar data. Remote Sensing of Environment, 112(5):2326-2340. Vieira I C G, Almeida A S D, Davidson E A, et al. 2003. Classifying successional forests using Landsat spectral properties and ecological characteristics in eastern Amazônia. Remote Sensing of Environment, 87(4):470-481. Vincent L, Soille P. 1991.Watersheds in digital spaces:an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis & Machine Intelligence, 13(6):583-598. Wang L, Sousa W P, Gong P. 2004. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. International Journal of Remote Sensing, 25(24):5655-5668. Wolter P T, Mladenoff D J, Host G E, et al. 1995. Improved forest classification in the northern Lake States using multi-temporal Landsat imagery. Photogrammetric Engineering & Remote Sensing, 61(9):1129-1143. Yang J, He Y, Weng Q. 2015. An automated method to parameterize segmentation scale by enhancing intrasegment homogeneity and intersegment heterogeneity. IEEE Geoscience & Remote Sensing Letters, 12(6):1282-1286. Young T Y, Fu K S. 1986. Handbook of pattern recognition and image processing. Pittsburgh:Academic Press. Yu Q, Gong P, Clinton N, et al. 2006. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogrammetric Engineering & Remote Sensing, 72(7):799-811. Zhan Q, Molenaar M, Tempfli K, et al. 2007. Quality assessment for geo-spatial objects derived from remotely sensed data. International Journal of Remote Sensing, 26(14):2953-2974. |