贾坤,李强子,田亦陈,等.2011.遥感影像分类方法研究进展.光谱学与光谱分析,31(10):2618-2623. (Jia K,Li Q Z,Tian Y C,et al. 2011. A review of classification methods of remote sensing imagery. Spectroscopy and Spectral Analysis,31(10):2618-2623.[in Chinese]) 竞霞,王锦地,王纪华,等. 2008.基于分区和多时相遥感数据的山区植被分类研究.遥感技术与应用, 23(4):394-397. (Jing X, Wang J D, Wang J H, et al. 2008. Classifying forest vegetation using sub-region classification based on multi-temporal remote sensing images. Remote Sensing Technology and Application, 23(4):394-397.[in Chinese]) 柯新利,邓祥征,何书金.2010.地理元胞自动机模型的尺度敏感性及原因.地理研究,29(5):863-872. (Ke X L, Deng X Z, He S J. 2010. Scale sensitivity and its causality for geo-cellular automata modelling. Geographical Research, 29(5):863-872.[in Chinese]) 李永亮,林辉,孙华,等.2010.基于BP神经网络的森林树种分类研究.中南林业科技大学学报,30(11):43-46. (Li Y L, Lin H, Sun H, et al. 2010. Study on forests species classification based on BP neural network. Journal of Central South University of Forestry& Technology, 30(11):43-46.[in Chinese]) 凌峰,张秋文,王乘,等.2005.基于元胞自动机模型的遥感图像亚像元定位.中国图象图形学报,10(7):916-921. (Ling F, Zhang Q W, Wang C, et al. 2005. Sub-pixel mapping of remote sensing images based on cellular automata model. Journal of Image and Graphics, 10(7):916-921.[in Chinese]) 刘华,陈永富,鞠洪波,等.2012.美国森林资源监测技术对我国森林资源一体化监测体系建设的启示.世界林业研究, 25(6):64-68. (Liu H, Chen Y F, Ju H B, et al. 2012.Inspiration of forest resources monitoring in USA for integrated forest resources monitoring system in China. World Forestry Research,25(6):64-68.[in Chinese]) 滕刚,陈玉,吴倩. 2010.基于元胞自动机各向异性扩散模型的图像分割算法.计算机工程与设计,31(16):3666-3669. (Teng G, Chen Y, Wu Q. 2010.Image segmentation based on lattice Boltzmann anisotropic diffusion model. Computer Engineering and Design, 31(16):3666-3669.[in Chinese]) 王仲君,王能超,冯飞,等. 2007.元胞自动机的演化行为研究.计算机应用研究,24(8):38-41. (Wang Z J,Wang N C, Feng F, et al. 2007. Research on evolved behavior of cellular automata. Application Research of Computers,24(8):38-41.[in Chinese]) 王海军,张文婷,贺三维,等. 2010.利用元胞自动机和模糊C均值进行图像分割.武汉大学学报:信息科学版,35(11):1288-1291. (Wang H J, Zhang W T, He S W,et al. 2010. An image segmentation method based on cellular automata and fuzzy C-means. Geomatics and Information Science of Wuhan University,35(11):1288-1291.[in Chinese]) 汪少华,张茂震,赵平安,等.2011.基于TM影像、森林资源清查数据和人工神经网络的森林碳空间分布模拟.生态学报, 31(4):998-1008. (Wang S H, Zhang M Z, Zhao P A, et al. 2011. Modelling the spatial distribution of forest carbon stocks with artificial neural network based on TM images and forest inventory data. Acta Ecologica Sinica, 31(4):998-1008.[in Chinese]) 严恩萍,林辉,莫登奎,等. 2010.基于ALOS数据的遥感植被分类研究.中南林业科技大学学报, 30(11):37-42. (Yan E P, Lin H, Mo D K, et al. 2010. Vegetation classification based on ALOS data. Journal of Central South University of Forestry& Technology, 30(11):37-42.[in Chinese]) 袁金国. 1999.森林植被遥感分类研究.河北师范大学报:自然科学版,23(2):274-277. (Yuan J G. 1999. Study of forest vegetation classification with remote sensing. Journal of Hebei Normal University:Natural Science, 23(2):274-277.[in Chinese]) Bone C, Dragicevic S, Roberts A.2006.A fuzzy-constrained cellular automata model of forest insect infestations. Ecological Modelling. Ecological Modelling,192(1/2):107-125. Brenner J C, Christman Z, Rogan J.2012. Segmentation of Landsat thematic mapper imagery improves buffelgass(Pennisetum ciliare) pasture mapping in the Sonoran Desert of Mexcio. Applied Geography, 34:569-575. Clarke K C, Hoppen S. 1997. A self-modifying cellular automaton model of historical urbanization in the San Francisco bay area. Environment and Planning B:Planning and Design, 24(2):247-261. Chattopadhyay S, Adhikari S, Sengupta S, et al. 2000. Highly regular, modular, and cascadable design of cellular automata-based pattern classifier. IEEE Transactions on Very Large Scale Integration Systems,8(6):724-735. Deutsch E S. 1972. Thinning algorithms on computation theoretic aspects of cellular automata. Communication of the ACM, 15(9):827-837. Goodenough D G, Dyk A, Niemann K O, et al. 2003. Processing Hyperion and ALI for forest classification. IEEE Transactions on Geoscience and Remote Sensing, 41(6):1321-1331. Ganguly N. 2003. Cellular automata evolution:theory and applications in pattern recognition and classification. Bengal:PhD thesis of Bengal Engineering College. Kocabas V, Dragicevic S. 2006.Assessing cellular automata model behaviour using a sensitivity analysis approach. Computers Environment& Urban Systems,30(6):921-953. Mitsova D, Shuster W, Wang X. 2011.A cellular automata model of land cover change to integrate urban growth with open space conservation. Landscape& Urban Planning,99(2):141-153. Mathey A H, Krcmar E, Dragicevic S, et al. 2008. An object-oriented cellular automata model for forest planning problems. Ecological Modelling,212(3):359-371. Paul R L.2006.Training cellular automata for image processing.IEEE Transactions on Image Processing, 15(7):2076-2087. Sun X Y, Du H Q, Han N,et al. 2014. Synergistic use of Landsat TM and SPOT5 imagery for object-based forest classification. Journal of Applied Remote Sensing, 8(1):801-807. Sternberg S R. 1980. Language and architecture for parallel image processing. Pattern Recognition in Practice, Amsterdam,35. Verbeke L P C, Vancoillie F M B, De wulf R R. 2004. Reusing back-propagating artificial neural network for land cover classification in tropical savannahs. International Journal of Remote Sensing,25(14):2747-2771. Van Wijk M T, Rodriguez-Iturbe I. 2002.Tree-grass competition in space andtime:Insights from a simple cellular automata model based onecohydrological dynamics. Water Resources Research,38(9):18-1-18-15. Wolfram S. 1983. Statistical mechanics of cellular automata. Reviews of Modern Physics,55(3):5686-5697. Weller A F, Harris A J, Ware J A. 2006. Artificial neural networks as potential classification tools for dinoflagellate cyst images:a case using the self-organizing map clustering algorithm. Review of Palaeobotany and Palynology,141(3/4):287-302. Yassemi S, Dragićević S, Schmidt M. 2008. Design and implementation of an integrated GIS-based cellular automata model to characterize forest fire behaviour. Ecological Modelling,210(1/2):71-84. |