欢迎访问林业科学,今天是

林业科学 ›› 2004, Vol. 40 ›› Issue (5): 25-31.doi: 10.11707/j.1001-7488.20040504

• 论文及研究报告 • 上一篇    下一篇

林分择伐空间结构优化模型研究

汤孟平 唐守正 雷相东 李希菲   

  1. 浙江林学院,临安311300;中国林业科学研究院资源信息研究所,北京100091
  • 收稿日期:2003-09-09 修回日期:1900-01-01 出版日期:2004-09-25 发布日期:2004-09-25

Study on Spatial Structure Optimizing Model of Stand Selection Cutting

Tang Mengping,Tang Shouzheng,Lei Xiangdong,Li Xifei   

  1. Zhejiang Forestry University Lin'an311300;The Research Institute of Forest Resource Information Technique, CAF Beijing100091
  • Received:2003-09-09 Revised:1900-01-01 Online:2004-09-25 Published:2004-09-25

摘要:

提出了林分择伐空间结构优化的建模方法,突破以功能优化为目标的或称功能优化模型的建模思想局限性,并建立了林分择伐空间结构优化模型。该模型集成现代森林经理学理论、生物多样性保护与信息技术,并成功地与检查法相结合。模型属非线性多目标整数规划,目标函数是基于混交、竞争和空间分布格局的空间结构,非空间结构作为主要约束条件。MonteCarlo法是模型求解的可行方法。以吉林省汪清林业局金沟岭林场的一个固定样地为例,用本模型进行择伐规划,得到具有空间位置信息的最优采伐方案。

关键词: 择伐, 林分空间结构, 空间结构优化模型, MonteCarlo法, 非线性整数规划

Abstract:

One building model method of spatial structure optimizing in stand selection cutting has been put forward in this paper, this method breaks through the traditional idea of function objective optimiziation building model. Based on this method, one model of spatial structure optimizing in stand selection cutting has been built. The model integrates modern forest management theory, biodiversity preservation and information technology, and successfully connects with control method. The model belongs to nonlinear multi_objective integer programming, the model objective is spatial structure based on mingling, competition and distribution pattern, and mainly subjects to non_spatial structure. The model can be solved by Monte Carlo algorithm. As an example, one fixed-size plot is selected from Jingou forestry farm Wangqing forestry bureau Jilin province. This model is used to make selection cutting plan, an optimal selection cutting plan with spatial information has been gotten and benefits making management decision.

Key words: Selection cutting, Stand spatial structure, Spatial structure optimizing model, Monte Carlo algorithm, Nonlinear integer programming