|
郭海滨, 郝立冬. 玉米AINTEGUMENTA-LIKE 1 (AIL1)基因的克隆和表达模式分析. 分子植物育种, 2021, 22 (21): 6980- 6985.
|
|
Guo H B, Hao L D. Cloning and expression pattern analysis of maize AINTEGUMENTA-LIKE 1(AIL1) gene. Molecular Plant Breeding, 2021, 22 (21): 6980- 6985.
|
|
何桂梅, 成仿云, 李 萍. 两种牡丹胚珠与幼胚离体培养的初步研究. 园艺学报, 2006, 33 (1): 185.
doi: 10.3321/j.issn:0513-353X.2006.01.047
|
|
He G M, Cheng F Y, Li P. Preliminary studies on culturein vitro of ovule and immature embryo of two tree-peony cultivars. Acta Horticulturae Sinica, 2006, 33 (1): 185.
doi: 10.3321/j.issn:0513-353X.2006.01.047
|
|
刘 豪, 王艳丽, 孟晓丹, 等. 小麦TaLEC1基因的克隆及其表达特性分析. 西北植物学报, 2019, 39 (5): 904- 910.
doi: 10.7606/j.issn.1000-4025.2019.05.0904
|
|
Liu H, Wang Y L, Meng X D, et al. Cloning and expression analysis of TaLEC1 gene from wheat. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39 (5): 904- 910.
doi: 10.7606/j.issn.1000-4025.2019.05.0904
|
|
文书生, 何绒绒, 郑佳康, 等. 牡丹组织培养技术研究进展. 林业科学, 2018, 54 (10): 143- 155.
doi: 10.11707/j.1001-7488.20181017
|
|
Wen S S, He R R, Zheng J K, et al. Research advances in tissue culture of tree peony. Scientia Silvae scincae, 2018, 54 (10): 143- 155.
doi: 10.11707/j.1001-7488.20181017
|
|
周秀梅. 2008. 牡丹体细胞胚胎发生研究. 北京: 北京林业大学.
|
|
Zhou X M. 2008. Studies on somatic embryogenesis of tree peony. Beijing: Beijing Forestry University. [in Chinese]
|
|
Aregawi K, Shen J Q, Pierroz G, et al. Morphogene-assisted transformation of Sorghum bicolor allows more efficient genome editing. Plant Biotechnology Journal, 2022, 20 (4): 748- 760.
doi: 10.1111/pbi.13754
|
|
Boulard C, Thévenin J, Tranquet O, et al. LEC1 (NF-YB9) directly interacts with LEC2 to control gene expression in seed. Biochimica et Biophysica Acta (BBA)–Gene Regulatory Mechanisms, 2018, 1861 (5): 443- 450.
doi: 10.1016/j.bbagrm.2018.03.005
|
|
Braybrook S A, Stone S L, Park S, et al. Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103 (9): 3468- 3473.
|
|
Gao J, Xue J Q, Xue Y Q, et al. Transcriptome sequencing and identification of key callus browning-related genes from petiole callus of tree peony (Paeonia suffruticosa cv. Kao) cultured on media with three browning inhibitors. Plant Physiology and Biochemistry, 2020, 149, 36- 49.
doi: 10.1016/j.plaphy.2020.01.029
|
|
Hesami M, Pepe M, de Ronne M, et al. Transcriptomic profiling of embryogenic and non-embryogenic callus provides new insight into the nature of recalcitrance in Cannabis. International Journal of Molecular Sciences, 2023, 24 (19): 14625.
doi: 10.3390/ijms241914625
|
|
Hofmann F, Schon M A, Nodine M D. The embryonic transcriptome of Arabidopsis thaliana. Plant Reproduction, 2019, 32 (1): 77- 91.
doi: 10.1007/s00497-018-00357-2
|
|
Ikeuchi M, Favero D S, Sakamoto Y, et al. Molecular mechanisms of plant regeneration. Annual Review of Plant Biology, 2019, 70, 377- 406.
doi: 10.1146/annurev-arplant-050718-100434
|
|
Lotan T, Ohto M A, Yee K M, et al. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell, 1998, 93 (7): 1195- 1205.
doi: 10.1016/S0092-8674(00)81463-4
|
|
Lowe K, La Rota M, Hoerster G, et al. Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cellular & Developmental Biology–Plant, 2018, 54 (3): 240- 252.
|
|
Lv S Z, Cheng S, Wang Z Y, et al. Draft genome of the famous ornamental plant Paeonia suffruticosa. Ecology and Evolution, 2020, 10 (11): 4518- 4530.
doi: 10.1002/ece3.5965
|
|
Ochoa-Alejo N. 2016. The uses of somatic embryogenesis for genetic transformation//Loyola-Vargas V M, Ochoa-Alejo N. eds. Somatic embryogenesis: fundamental aspects and applications. Cham: Springer, 415-434.
|
|
Quiroz-Figueroa F R, Rojas-Herrera R, Galaz-Avalos R M, et al. 2006. Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell, Tissue and Organ Culture, 86(3): 285-301.
|
|
Ramakrishnan M, Zhou M B, Ceasar S A, et al. Epigenetic modifications and miRNAs determine the transition of somatic cells into somatic embryos. Plant Cell Reports, 2023, 42 (12): 1845- 1873.
doi: 10.1007/s00299-023-03071-0
|
|
Stone S L, Braybrook S A, Paula S L, et al. Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105 (8): 3151- 3156.
|
|
Xie L H, Niu L X, Zhang Y L, et al. Pollen sources influence the traits of seed and seed oil in Paeonia ostii ‘Feng Dan’. HortScience, 2017, 52 (5): 700- 705.
doi: 10.21273/HORTSCI11803-17
|
|
Yazawa K, Takahata K, Kamada H. Isolation of the gene encoding carrot leafy cotyledon1 and expression analysis during somatic and zygotic embryogenesis. Plant Physiology and Biochemistry, 2004, 42 (3): 215- 223.
doi: 10.1016/j.plaphy.2003.12.003
|
|
Yuan H Y, Kagale S, Ferrie A M R. Multifaceted roles of transcription factors during plant embryogenesis. Frontiers in Plant Science, 2024, 14, 1322728.
doi: 10.3389/fpls.2023.1322728
|
|
Yuan J H, Jiang S J, Jian J B, et al. Genomic basis of the giga-chromosomes and giga-genome of tree peony Paeonia ostii. Nature Communications, 2022, 13 (1): 7328.
doi: 10.1038/s41467-022-35063-1
|
|
Zhang X X, Liu X, Zhou M H, et al. PacBio full-length sequencing integrated with RNA-seq reveals the molecular mechanism of waterlogging and its recovery in Paeonia ostii. Frontiers in Plant Science, 2022, 13, 1030584.
doi: 10.3389/fpls.2022.1030584
|