林业科学 ›› 2025, Vol. 61 ›› Issue (11): 242-254.doi: 10.11707/j.1001-7488.LYKX20240653
• 研究简报 • 上一篇
梁燕1,王因花1,*(
),燕丽萍1,孔雨光2,李庆华1,仲伟国1,田泽新1,董元夫3,张元帅3
收稿日期:2024-11-03
修回日期:2025-02-18
出版日期:2025-11-25
发布日期:2025-12-11
通讯作者:
王因花
E-mail:415474942@qq.com
基金资助:
Yan Liang1,Yinhua Wang1,*(
),Liping Yan1,Yuguang Kong2,Qinghua Li1,Weiguo Zhong1,Zexin Tian1,Yuanfu Dong3,Yuanshuai Zhang3
Received:2024-11-03
Revised:2025-02-18
Online:2025-11-25
Published:2025-12-11
Contact:
Yinhua Wang
E-mail:415474942@qq.com
摘要:
目的: 基于荧光SSR分子标记技术分析刺槐群体遗传多样性和遗传结构,初步筛选核心种质资源,为科学管理和保存刺槐种质资源、精确构建核心种质资源库以及有效提高育种效率提供理论参考。方法: 利用17对荧光SSR引物,分析来自美国阿巴拉契亚、北京、河南、山东、山西、辽宁6个种源地323份刺槐种质资源群体的遗传多样性和遗传结构,应用Gene Marker 2.2.0 结合POPGENE 32软件计算观测等位基因数(Na)、有效等位基因数(Ne)、观测杂合度(Ho)、期望杂合度(He)、Shannon信息指数(I)、Nei’s基因多样性指数(H)和种群间F值。运用PowerMaker软件获得多态性信息含量(PIC)值。利用Structure软件分析刺槐种群结构,使用Python 3算法中的Evanno2005方法推断划分最佳遗传类群。采用最小距离逐步抽样法(LDSS)构建核心种质库后进行优化,t检验验证优化核心种质库的代表性。结果: 323份刺槐种质资源群体共扩增出135个等位基因,平均每对引物扩增7.941个等位基因,有效等位基因数均值2.808,Shannon信息指数均值1.200,观测杂合度均值0.191,期望杂合度均值0.588,Nei’s基因多样性指数均值0.589,多态信息含量均值0.544,表明刺槐群体遗传多样性较高;6个地理来源刺槐群体整体分析显示遗传多样性最高为辽宁、最低为北京;6个地理来源323份刺槐种质资源可划分为2个亚群,基因变异主要存在于种质资源个体间。最小距离逐步抽样法确定初始核心种质资源库最佳比例为20%,优化核心种质资源库比例为23.220%,确定248份保留种质、63份初始核心种质、12份补充种质,共筛选出75份核心种质,北京6份、河南8份、美国阿巴拉契亚17份、山西8份、山东29份、辽宁7份;核心种质资源库相比原始种质资源库Na保留比例100.00%,Ne、I、Ho、He和H分别增加0.423、0.245、0.267、0.192和0.197,t检验表明核心种质库能够充分代表原始种质资源群体的遗传多样性。结论: 323份刺槐种质资源群体遗传多样性处于较高水平,遗传结构与地理来源相关性较小,初步构建的核心种质库可为下一步的资源保护和高效利用提供参考。
中图分类号:
梁燕,王因花,燕丽萍,孔雨光,李庆华,仲伟国,田泽新,董元夫,张元帅. 刺槐群体遗传多样性分析及其核心种质初步筛选[J]. 林业科学, 2025, 61(11): 242-254.
Yan Liang,Yinhua Wang,Liping Yan,Yuguang Kong,Qinghua Li,Weiguo Zhong,Zexin Tian,Yuanfu Dong,Yuanshuai Zhang. Analysis of Genetic Diversity in Robinia pseudoacacia Populations and Preliminary Screening of the Core Germplasm[J]. Scientia Silvae Sinicae, 2025, 61(11): 242-254.
表1
SSR引物信息①"
| 引物 Primer | 重复单元 Repeat motifs | 引物序列 Primer sequence | 荧光类型 Fluorescence type | |
| MQ7 | (AAT)11 | F: | AACACGAGTCGAGGCTATCAAT | TARMRA |
| R: | ACGGCTAGAGTCATTGGTTCAA | |||
| MQ12 | (AT)8 | F: | AGAAAAGCGTCCATTGTCTAAT | FAM |
| R: | AGAGGGACAAGACAGAAAATG | |||
| MQ32 | (TG)10 | F: | TCCCTCTCTTTCCGTTGATGAT | FAM |
| R: | AATCCTGGACGTGAAGAATAAA | |||
| MQ37 | (TGT)10 | F: | ACGAATTCTTTCTTCCGCAAAA | HEX |
| R: | TCGCCCTCTATTTCTTGTTCTT | |||
| MQ39 | (A)12 | F: | CTTCGTGGTGGTGTCCTTTATA | TARMRA |
| R: | CGAAAGAATCCACTGCCAATTT | |||
| MQ47 | (TCA)10 | F: | TGGTTCCGTTGCTTTCTTATTC | ROX |
| R: | AGACTATGCCTACGCCATATAA | |||
| MQ49 | (T)10 | F: | ACTGCCGCCACTTATCTTTATT | FAM |
| R: | GAACCGCTGGATCATCACTTAT | |||
| MQ54 | (ACC)10 | F: | CAGTCCAAGGGTTGAAGTAAAA | HEX |
| R: | GTCGTTAAACCCGGCAAAATA | |||
| MQ59 | (T)10 | F: | AAATCGTCGAGAACCCTTTAAA | ROX |
| R: | TTCTGGGCCGAGAGAATTATTT | |||
| MQ64 | (T)14 | F: | GGATAGAGATATCGCCCGTTAT | TARMRA |
| R: | TCGTGTGGATCAAAAGAAAGAT | |||
| CC2-48 | (AGA)11 | F: | GACACTGAAATAGGCTCCTGAT | TARMRA |
| R: | ATTTTGGCAGGAGGGGAAATTA | |||
| CC2-54 | (AAT)10 | F: | TCAGTCCAAGGGTTGAAGTAAA | HEX |
| R: | GTCGTTAAACCCGGCAAAATA | |||
| CC2-61 | (A)10 | F: | TGAGGCCCCATATTGACTATCA | FAM |
| R: | TCGGGAGTCACAAATTCGTTAA | |||
| MQ16 | (T)12c(A)10 | F: | ACCCTTACGCTTTGCAGATATA | FAM |
| R: | TCAACGTCCAATTTTCGGTAGA | |||
| RPly02 | (CCA)6 | F: | TGTGAATGGTTGGTGGACAT | FAM |
| R: | CGTTGCTTGGAGGAGAATAA | |||
| RPly22 | (ACCTGA)3 | F: | ATCACATCTGTTCCTCCAC | TARMRA |
| R: | TTCTCCTCAGCCACTTCTTT | |||
| RPly109 | (AG)17 | F: | GAGGAATCACAAAACCGTTTGG | HEX |
| R: | TGGGATTTGAGAGAGTGGTGGTG | |||
表2
刺槐种质资源总群体遗传多样性①"
| 位点Locus | Na | Ne | I | Ho | He | H | PIC | Fst |
| MQ49 | 6.000 | 4.261 | 1.588 | 0.016 | 0.765 | 0.767 | 0.730 | 0.041 |
| MQ54 | 5.000 | 2.576 | 1.158 | 0.356 | 0.612 | 0.613 | 0.566 | 0.035 |
| MQ7 | 7.000 | 2.832 | 1.263 | 0.133 | 0.647 | 0.648 | 0.592 | 0.028 |
| CC2-61 | 3.000 | 2.093 | 0.855 | 0.015 | 0.522 | 0.523 | 0.441 | 0.038 |
| CC2-54 | 5.000 | 2.762 | 1.209 | 0.378 | 0.638 | 0.639 | 0.591 | 0.028 |
| CC2-48 | 7.000 | 3.348 | 1.301 | 0.526 | 0.701 | 0.702 | 0.646 | 0.023 |
| MQ59 | 7.000 | 2.752 | 1.294 | 0.016 | 0.637 | 0.638 | 0.590 | 0.034 |
| MQ32 | 9.000 | 2.753 | 1.286 | 0.019 | 0.637 | 0.638 | 0.588 | 0.055 |
| MQ37 | 7.000 | 1.391 | 0.556 | 0.099 | 0.281 | 0.282 | 0.257 | 0.051 |
| MQ39 | 9.000 | 2.856 | 1.359 | 0.019 | 0.650 | 0.651 | 0.609 | 0.050 |
| MQ47 | 7.000 | 2.107 | 0.953 | 0.012 | 0.525 | 0.526 | 0.451 | 0.033 |
| MQ12 | 8.000 | 2.977 | 1.361 | 0.028 | 0.664 | 0.665 | 0.621 | 0.052 |
| MQ64 | 6.000 | 2.379 | 1.016 | 0.016 | 0.580 | 0.581 | 0.500 | 0.035 |
| MQ16 | 7.000 | 1.372 | 0.606 | 0.015 | 0.271 | 0.272 | 0.258 | 0.050 |
| RPly02 | 10.000 | 3.062 | 1.468 | 0.557 | 0.673 | 0.674 | 0.642 | 0.026 |
| RPly22 | 9.000 | 1.538 | 0.797 | 0.347 | 0.350 | 0.350 | 0.334 | 0.018 |
| RPly109 | 23.000 | 6.675 | 2.334 | 0.690 | 0.850 | 0.852 | 0.838 | 0.055 |
| 平均值Mean | 7.941 | 2.808 | 1.200 | 0.191 | 0.588 | 0.589 | 0.544 | 0.038 |
表3
基于6个地理来源刺槐群体遗传多样性①"
| 群体 Population | Na | Ne | I | Ho | He | H |
| 北京 Beijing | 3.412 | 2.072 | 0.845 | 0.136 | 0.481 | 0.497 |
| 山西 Shanxi | 4.765 | 2.772 | 1.136 | 0.164 | 0.582 | 0.595 |
| 山东 Shandong | 6.412 | 2.897 | 1.175 | 0.194 | 0.588 | 0.590 |
| 美国阿巴拉契亚 Appalachia of USA | 6.353 | 2.501 | 1.113 | 0.207 | 0.523 | 0.530 |
| 辽宁 Liaoning | 4.882 | 2.865 | 1.177 | 0.208 | 0.609 | 0.621 |
| 河南 Henan | 4.118 | 2.586 | 1.058 | 0.183 | 0.578 | 0.588 |
| 平均值Mean | 4.990 | 2.616 | 1.084 | 0.182 | 0.560 | 0.570 |
表5
各取样比例下的刺槐群体遗传多样性比较①"
| 取样比例 Sampling ratio (%) | Na | Ne | I | Ho | He | H | 等位基因总数 Total allele |
| 100 | 7.941 | 2.808 | 1.200 | 0.191 | 0.588 | 0.589 | 135 |
| 60 | 7.824 | 3.491 | 1.363 | 0.214 | 0.658 | 0.660 | 133 |
| 55 | 7.824 | 3.613 | 1.390 | 0.221 | 0.670 | 0.672 | 133 |
| 50 | 7.765 | 3.668 | 1.405 | 0.222 | 0.676 | 0.679 | 132 |
| 45 | 7.647 | 3.720 | 1.415 | 0.225 | 0.679 | 0.682 | 130 |
| 40 | 7.412 | 3.807 | 1.433 | 0.227 | 0.689 | 0.691 | 126 |
| 35 | 7.412 | 3.918 | 1.464 | 0.226 | 0.701 | 0.704 | 126 |
| 30 | 7.588 | 3.829 | 1.461 | 0.234 | 0.694 | 0.698 | 129 |
| 25 | 7.412 | 3.938 | 1.473 | 0.238 | 0.698 | 0.702 | 126 |
| 20 | 7.235 | 4.060 | 1.501 | 0.254 | 0.708 | 0.714 | 123 |
| 15 | 7.059 | 3.944 | 1.486 | 0.260 | 0.703 | 0.710 | 120 |
| 10 | 6.529 | 3.542 | 1.408 | 0.281 | 0.669 | 0.680 | 111 |
| 5 | 5.941 | 3.467 | 1.392 | 0.213 | 0.667 | 0.689 | 101 |
表6
各取样比例下的刺槐种质地理来源情况"
| 取样比例 Sampling ratio (%) | 北京 Beijing | 山西 Shanxi | 山东 Shandong | 美国阿巴拉契亚 Appalachia of USA | 辽宁 Liaoning | 河南 Henan | 种质总数 Germplasm total |
| 100 | 16 | 24 | 187 | 41 | 26 | 29 | 323 |
| 60 | 9 | 11 | 98 | 29 | 17 | 23 | 187 |
| 55 | 9 | 10 | 87 | 26 | 16 | 21 | 169 |
| 50 | 9 | 10 | 79 | 24 | 15 | 21 | 158 |
| 45 | 8 | 10 | 71 | 22 | 15 | 19 | 145 |
| 40 | 7 | 10 | 64 | 18 | 13 | 17 | 129 |
| 35 | 7 | 9 | 49 | 18 | 13 | 14 | 110 |
| 30 | 7 | 10 | 37 | 18 | 13 | 14 | 99 |
| 25 | 6 | 7 | 33 | 16 | 10 | 12 | 84 |
| 20 | 5 | 5 | 23 | 15 | 7 | 8 | 63 |
| 15 | 5 | 5 | 15 | 13 | 6 | 7 | 51 |
| 10 | 3 | 2 | 8 | 8 | 5 | 5 | 31 |
| 5 | 3 | 0 | 3 | 6 | 2 | 2 | 16 |
表7
刺槐核心种质库遗传多样性参数t检验①"
| 群体 Population | 种质总数 Germplasm total | N | Na | Ne | I | Ho | He | H |
| 原始种质 Original germplasms | 323 | 135.000 | 7.941 | 2.808 | 1.200 | 0.191 | 0.588 | 0.589 |
| 初始核心种质库 Initial core germplasm collection | 63 | 123.000 | 7.235 | 4.060 | 1.501 | 0.254 | 0.708 | 0.714 |
| t=1.047 | P=0.330 | |||||||
| 原始种质 Original germplasms | 323 | 135.000 | 7.941 | 2.808 | 1.200 | 0.191 | 0.588 | 0.589 |
| 优化核心种质库 Optimize core germplasm collection | 75 | 135.000 | 7.941 | 3.996 | 1.495 | 0.242 | 0.701 | 0.705 |
| t=0.992 | P=0.354 | |||||||
| 初始核心种质库 Initial core germplasm collection | 63 | 123.000 | 7.235 | 4.060 | 1.501 | 0.254 | 0.708 | 0.714 |
| 优化核心种质库 Optimize core germplasm collection | 75 | 135.000 | 7.941 | 3.996 | 1.495 | 0.242 | 0.701 | 0.705 |
| t=?1.578 | P=0.159 | |||||||
|
陈 存, 丁昌俊, 张 静, 等. 美洲黑杨群体结构分析及核心种质库构建. 林业科学, 2020, 56 (9): 67- 76.
doi: 10.11707/j.1001-7488.20200908 |
|
|
Chen C, Ding J C, Zhang J, et al. Population structure analysis and core collection construction of Populus deltoids. Scientia Silvae Sinicae, 2020, 56 (9): 67- 76.
doi: 10.11707/j.1001-7488.20200908 |
|
| 崔文娟, 罗俊杰, 陈 军, 等. 甘肃紫苏资源遗传多样性分析及核心种质构建. 中国油料作物学报, 2025, 47 (2): 380- 392. | |
| Cui W J, Luo J J, Chen J, et al. Genetic diversity analysis and core collections construction of perilla landraces in Gansu. Chinese Journal of Oil Crop Sciences, 2025, 47 (2): 380- 392. | |
| 代 涵. 2024. 油茶主要农艺性状与SSR分子标记的关联比较分析. 贵阳: 贵州师范大学. | |
| Dai H. 2024. Comparative analysis of the association between major agronomic traits and SSR molecular markers in Camellia oleifera. Guiyang: Guizhou Normal University. [in Chinese] | |
| 冯夏莲, 荷承忠, 张志毅, 等. 植物遗传多样性研究方法概述. 西南林学院学报(自然科学版), 2006, 26 (1): 69- 79. | |
| Feng X L, He C Z, Zhang Z Y, et al. Summarization on research methods of plant genetic diversity. Journal of Southwest Forestry University (Natural Sciences), 2006, 26 (1): 69- 79. | |
| 顾保阳. 2022. 山东省费县大青山刺槐种质资源分析及评价. 泰安: 山东农业大学. | |
| Gu B Y. 2022. Analysis and evaluation of Robinia pseudoacacia germplasm resources in Daqing Mountain of Fei County, Shandong. Tai’an: Shandong Agricultural University. [in Chinese] | |
| 顾万春. 中国林木遗传(种质)资源保存与研究现状. 世界林业研究, 1999, 12 (2): 50- 57. | |
| Gu W C. The present situation of forest tree genetic germplasm resource conservation and research of in China. World Forestry Research, 1999, 12 (2): 50- 57. | |
| 管崇帆, 郑京生, 李雅婧, 等. 气候和密度对刺槐径向生长和干旱脆弱性的影响. 生态学报, 2023, 43 (8): 3261- 3272. | |
| Guan C F, Zheng J S, Li Y J, et al. Effects of climate and density on the radial growth and drought vulnerability of Robinia pseudoacacia. Acta Ecologica Sinica, 2023, 43 (8): 3261- 3272. | |
| 郭 慧. 2022. 刺槐半同胞家系多性状综合评价及优树遗传多样性分析. 泰安: 山东农业大学. | |
| Guo H. 2022. Comprehensive evaluation of multiple traits in Robinia pseudoacacia L. half sibling families and analysis of genetic diversity of elite trees. Tai’an: Shandong Agricultural University. [in Chinese] | |
|
郭 琪, 孙宇涵, 张元帅, 等. 山东大青山刺槐无性系叶性状的表型变异分析与饲用优良无性系选择. 北京林业大学学报, 2021, 43 (11): 62- 70.
doi: 10.12171/j.1000-1522.20200305 |
|
|
Guo Q, Sun Y H, Zhang Y S, et al. Phenotypic variation analysis on leaf traits and selection of optimal forage clones of Robinia pseudoacacia clones in Shandong Province of eastern China. Journal of Beijing Forestry University, 2021, 43 (11): 62- 70.
doi: 10.12171/j.1000-1522.20200305 |
|
| 胡守荣, 夏 铭, 郭长英, 等. 2001. 林木遗传多样性研究方法概况. 东北林业大学学报, 29(3): 72−75. | |
| Hu S R, Xia M, Guo C Y, et al. 2001. Methods of genetic diversity for forest tree. Journal of Northeast Forestry University, 29(3): 72−75. [in Chinese] | |
| 黄伟业, 李润泽, 唐 芳, 等. 基于表型性状的花苜蓿核心种质构建. 草地学报, 2025, 33 (3): 1- 23. | |
| Huang W Y, Li R Z, Tang F, et al. Construction of Medicago ruthenica L. core germplasm based on phenotypic traits. Acta Agrestia Sinica, 2025, 33 (3): 1- 23. | |
| 李魁鹏, 陈仕昌, 程 琳, 等. 基于SSR标记构建广西杉木核心种质. 广西科学, 2021, 28 (5): 511- 519. | |
| Li K P, Chen S C, Cheng L, et al. Construction of core germplasm of Cunninghamia lanceolate in Guangxi based on SSR markers. Guangxi Sciences, 2021, 28 (5): 511- 519. | |
| 刘 松, 聂兴华, 李伊然, 等. 基于SSR荧光标记构建板栗品种(系)核心种质群. 果树学报, 2023, 40 (2): 230- 241. | |
| Liu S. Nie X H, Li Y R, et al. Construction of core collection of Chinese chestnut cultivars (lines) based on SSR fluorescence markers. Journal of Fruit Science, 2023, 40 (2): 230- 241. | |
| 毛秀红. 2017. 刺槐不同来源无性系种质的表型变异与遗传多样性分析. 北京: 中国林业科学研究院. | |
| Mao X H. 2017. Analysis of phenotypic variation and genetic diversity for Robinia pseudoacacia clonal germplasms from different Sources. Beijing: Chinese Academy of Forestry. [in Chinese] | |
|
毛秀红, 朱士利, 李善文, 等. 基于荧光SSR标记的毛白杨核心种质构建. 北京林业大学学报, 2020, 42 (7): 40- 47.
doi: 10.12171/j.1000-1522.20190413 |
|
|
Mao X H, Zhu S L, Li S W, et al. Core germplasm construction of Populus tomentosa based on the fluorescent SSR markers. Journal of Beijing Forestry University, 2020, 42 (7): 40- 47.
doi: 10.12171/j.1000-1522.20190413 |
|
|
毛秀红, 闫少波, 葛 磊, 等. 毛白杨微核心种质构建方法的探讨. 北京林业大学学报, 2023, 45 (2): 58- 67.
doi: 10.12171/j.1000-1522.20210150 |
|
|
Mao X H, Yan S B, Ge L, et al. Study on construction method of microcore germplasm of Populus tomentosa. Journal of Beijing Forestry University, 2023, 45 (2): 58- 67.
doi: 10.12171/j.1000-1522.20210150 |
|
| 莫长明, 谢文娟, 郭文锋, 等. 罗汉果遗传多样性与群体结构及核心种质研究. 中草药, 2023, 54 (18): 6040- 6054. | |
| Mo C M, Xie W J, Guo W F, et al. Study on genetic diversity and population structure and core collection of Siraitia grosvenorii. Chinese Traditional and Herbal Drugs, 2023, 54 (18): 6040- 6054. | |
| 秦子璐, 徐正康, 戴晓港, 等. 2024. 望春玉兰种质资源遗传多样性分析与核心种质构建. 园艺学报, 51(8): 1823−1832. | |
| Qing Z L, Xu Z K, Dai X G, et al. Genetic diversity dnalysis and core collection construction of Magnolia biondii germplasm. Acta Horticulturae Sinica, 51(8): 1823−1832. [in Chinese] | |
|
沈 浩, 刘登义. 遗传多样性概述. 生物学杂志, 2001, 18 (3): 5- 9.
doi: 10.3969/j.issn.2095-1736.2001.03.002 |
|
|
Shen H, Liu D Y. Summary of genetic diversity. Journal of Biology, 2001, 18 (3): 5- 9.
doi: 10.3969/j.issn.2095-1736.2001.03.002 |
|
|
孙海龙, 鲁晓峰, 刘 硕, 等. ‘矮甜李’在辽宁兴城引种表现及栽培技术. 北方园艺, 2024, 47 (24): 155- 158.
doi: 10.11937/bfyy.20242708 |
|
|
Sun H L, Lu X F, Liu S, et al. Performance and cultivation techniques of ‘Aitian Plum’ in Xingcheng of Liaoning Province. Northern Horticulture, 2024, 47 (24): 155- 158.
doi: 10.11937/bfyy.20242708 |
|
| 汪 萍. 2017. 刺槐优良品种选择及优株分子标记. 合肥: 安徽农业大学. | |
| Wang P. 2017. Selection on fine variety Robinia pseudoacacia L and its molecular markers. Hefei: Anhui Agricultural University. [in Chinese] | |
| 王中仁. 植物遗传多样性和系统学研究中的等位酶分析. 生物多样性, 1994, 2 (1): 3843. | |
| Wang Z R. Allozyme analysis in studies of plant genetic diversity and systematice. Biodiversity Science, 1994, 2 (1): 3843. | |
| 文亚峰, 韩文军, 吴 顺. 2010. 植物遗传多样性及其影响因素. 中南林业科技大学学报, 30(12): 80−87. | |
| Wen Y F, Han W J, Wu S. 2010. Plant genetic diversity and its influencing factors. Journal of Central South University of Forestry & Technology, 30(12): 80−87. [in Chinese] | |
| 吴桂容. 2004. 细胞分类学研究进展. 贺州学院学报. 20(2): 75−79. | |
| Wu G R. 2004. Advances in cytotaxonomy. Journal of Hezhou University, 20(2): 75−79. [in Chinese] | |
| 吴 涛, 陈少瑜, 肖良俊, 等. 基于 SSR 标记的云南省核桃种质资源遗传多样性及核心种质构建. 植物遗传资源学报, 2020, 21 (3): 767- 774. | |
| Wu T, Chen S Y, Xiao L J, et al. Genetic diversity analysis and core collection construction of walnut germplasm in Yunnan Province. Journal of Plant Genetic Resources, 2020, 21 (3): 767- 774. | |
|
荀守华, 乔玉玲, 张江涛, 等. 我国刺槐遗传育种现状及发展对策. 山东林业科技, 2009, 39 (1): 92- 96.
doi: 10.3969/j.issn.1002-2724.2009.01.038 |
|
|
Xun S H, Qiao Y L, Zhang J T, et al. Research progress and development tactics on genetics breeding of Robinia pseudoacacia L. in China. Journal of Shandong Forestry Science and Technology, 2009, 39 (1): 92- 96.
doi: 10.3969/j.issn.1002-2724.2009.01.038 |
|
| 闫平玉, 张 磊, 王佳兴, 等. 红松天然种群遗传多样性分析及核心种质构建. 南京林业大学学报(自然科学版), 2024, 48 (5): 1- 17. | |
| Yan Y P, Zhang L, Wang J X, et al. Analysis of genetic diversity and construction of core collections of Korean pine natural population. Journal of Nanjing Forestry University (Natural Sciences Edition), 2024, 48 (5): 1- 17. | |
|
杨海平, 李继生, 于国强, 等. 分子标记技术在林木育种中的应用. 山东林业科技, 2017, 47 (3): 111- 114.
doi: 10.3969/j.issn.1002-2724.2017.03.030 |
|
|
Yang H P, Li J S, Yu G Q, et al. Application of molecular marker technology in tree breeding. Journal of Shandong Forestry Science and Technology, 2017, 47 (3): 111- 114.
doi: 10.3969/j.issn.1002-2724.2017.03.030 |
|
| 杨欣超, 张凯权, 王 静, 等. 基于SSR分子标记的刺槐遗传多样性分析及核心种质的构建. 分子植物育种, 2020, 18 (9): 3086- 3097. | |
| Yang X C, Zhang K Q, Wang J, et al. Analysis of genetic diversity and construction of core collections of black locust based on SSR markers. Molecular Plant Breeding, 2020, 18 (9): 3086- 3097. | |
|
张俊红, 王 洋, 周生财, 等. 闽楠群体遗传结构分析与核心种质库构建. 林业科学, 2024, 60 (1): 68- 79.
doi: 10.11707/j.1001-7488.LYKX20230138 |
|
|
Zhang J H, Wang Y, Zhou S C, et al. Genetic structure analysis and core germplasm collection construction of Phoebe bournei Populations. Scientia Silvae Sinicae, 2024, 60 (1): 68- 79.
doi: 10.11707/j.1001-7488.LYKX20230138 |
|
| 张咏琦, 王 超, 许林林, 等. 野生二倍体草莓的SSR分子标记开发及核心种质的构建. 园艺学报, 2023, 50 (11): 2365- 2375. | |
| Zhang Y Q, Wang C, Xu L L, et al. Development of SSR molecular markers and construction of core collection of wild diploid strawberry. Acta Horticulturae Sinica, 2023, 50 (11): 2365- 2375. | |
| 郑鹏飞. 2022. 北京山区典型森林生态系统碳氮循环及其与水文过程的耦合关系. 北京: 北京林业大学. | |
| Zheng P F. 2022. Coupling of carbon-nitrogen cycles and hydrological process of typical forest ecosystems in Beijing mountainous area. Beijing: Beijing Forestry University. [in Chinese] | |
| 邹春静, 盛晓峰, 韩文卿, 等. 2003. 同工酶分析技术及其在植物研究中的应用. 生态学杂志, 22(6): 63−69. | |
| Zou C J, Sheng X F, Han W Q, et al. Isozyme analysis technology and its application in plant research. Chinese Journal of Ecology, 22(6): 63−69. [in Chinese] | |
|
Balakrishnan R, Nair N V, Sreenivasan T V. A method for establishing a core collection of Saccharum officinarum L. germplasm based on quantitative-morphological data. Genetic Resource and Crop Evolution, 2000, 47 (1): 1- 9.
doi: 10.1023/A:1008780526154 |
|
|
Castelán P M, Cortés-Cruz M, Mendoza-Castillo M D C, et al. Diversity and genetic structure inferred with microsatellites in natural populations of Pseudotsuga menziesii (Mirb.) Franco (Pinaceae) in the central region of Mexico. Forests, 2019, 10 (2): 101.
doi: 10.3390/f10020101 |
|
|
Charmet G, Balfourier F, Ravel C, et al. Genotype Ⅹ environment interactions in a core collection of French perennial ryegrass populations. Theoretical and Applied Genetics, 1993, 86 (6): 731- 736.
doi: 10.1007/BF00222663 |
|
| Doyle J J, Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 1987, 3 (19): 11- 15. | |
|
Ferguson M E, Hearne S J, Close T J, et al. Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava. Theoretical and Applied Genetics, 2012, 124 (4): 685- 695.
doi: 10.1007/s00122-011-1739-9 |
|
| Frankel O H, Brown A H D. l984. Current plant genetic resources a critical appraisal. New Delhi: Oxford & IBH Publishing Co. | |
|
Gepts P. Plant genetic resources conservation and utilization: the accomplishments and future of a societal insurance policy. Crop Science, 2006, 46 (5): 2278- 2292.
doi: 10.2135/cropsci2006.03.0169gas |
|
| Distefano G, La Malfa S, Gentile A, et al. EST-SNP genotyping of Citrus species using high-resolution melting curve analysis. Tree Genetics & Genomes, 2013, 9 (5): 1271- 1281. | |
|
Hamrick J L, Blanton H M, Hamrick K J. Genetic structure of geographically marginal populations of ponderosa pine. American Journal of Botany, 1989, 76 (11): 1559- 1568.
doi: 10.1002/j.1537-2197.1989.tb15141.x |
|
| Hamrick J L, Godt M J W, Sherman-Broyles S L. Factors influencing levels of genetic diversity in woody plant species. New Forests, 1992, 6 (1): 95- 124. | |
|
Jin Y Q, Ma Y P, Wang S, et al. Genetic evaluation of the breeding population of a valuable reforestation conifer Platycladus orientalis (Cupressaceae). Scientific Reports, 2016, 6, 34821.
doi: 10.1038/srep34821 |
|
|
Li Z C, Zhang H L, Zeng Y W, et al. Studies on sampling schemes for the establishment of core collection of rice landraces in Yunnan, China. Genetic Resources and Crop Evolution, 2002, 49 (1): 67- 74.
doi: 10.1023/A:1013855216410 |
|
|
Rubio-Moraga A, Candel-Perez D, Lucas-Borja M E, et al. Genetic diversity of Pinus nigra Arn. populations in southern Spain and northern Morocco revealed by inter-simple sequence repeat profiles. International Journal of Molecular Sciences, 2012, 13 (5): 5645- 5658.
doi: 10.3390/ijms13055645 |
|
| Schaal B A, O’Kane S L Jr, Rogstad S H. DNA variation in plant populations. Trends in Ecology & Evolution, 1991, 6 (10): 329- 333. | |
| Van Hintum T J L. 1999. The general methodology for creating a core collection//Johnson R C, Hodgkin T. eds. Core collections for today and tomorrow. Italy: IPGRI, 10−17. | |
|
Wang Z F, Zhang X, Lei W X, et al. Chromosome-level genome assembly and population genomics of Robinia pseudoacacia reveal the genetic basis for its wide cultivation. Communications Biology, 2023, 6 (1): 797.
doi: 10.1038/s42003-023-05158-6 |
|
|
Wilson E O. The biological diversity crisis. BioScience, 1985, 35 (11): 700- 706.
doi: 10.2307/1310051 |
| [1] | 李平平,王彦辉,于澎涛,王依瑞,段文标,万艳芳,韦小茶,史再军. 黄土高原刺槐人工林生长对立地质量和林分密度的响应[J]. 林业科学, 2025, 61(7): 192-207. |
| [2] | 高婉婷,胡晓创,孙守家,张劲松,孟平,蔡金峰. 基于优化的MaxEnt模型预测未来气候变化下刺槐在中国的空间分布[J]. 林业科学, 2025, 61(4): 104-116. |
| [3] | 殷晓晴,马岚,牛凤娇. 模拟干旱条件下晋西黄土区刺槐林土壤水分运移特征[J]. 林业科学, 2025, 61(10): 49-59. |
| [4] | 李鑫,刘红霞,陈生娟,盛敏. 混交林驯化的AMF通过抑制侧柏生长增强刺槐的竞争优势[J]. 林业科学, 2025, 61(10): 87-95. |
| [5] | 张俊红,王洋,周生财,吴小林,吴仁超,杨琪,张毓婷,童再康. 闽楠群体遗传结构分析与核心种质库构建[J]. 林业科学, 2024, 60(1): 68-79. |
| [6] | 蔡天润,郭佳,王紫怡,宋亚欣,张淑敏,杨敏生,张军. 基于SSR分子标记的山地刺槐克隆生长空间格局分析[J]. 林业科学, 2023, 59(6): 19-27. |
| [7] | 李平平,王彦辉,段文标,王依瑞,于澎涛,甄理,李志鑫,尚会军,史再军,于艺鹏. 黄土高原刺槐人工林立地指数变化及评价[J]. 林业科学, 2023, 59(4): 18-31. |
| [8] | 韩娟,李亚鹏,田彦挺,郭琪,李云,孙宇涵,邓永平,牛东升,苏立琢,李秀宇,彭祚登. 刺槐离体叶片高效再生体系的优化[J]. 林业科学, 2023, 59(4): 68-78. |
| [9] | 丁晓磊,汪青桐,林司曦,赵瑞文,张悦,叶建仁. 广东省与江苏省松材线虫种群遗传结构差异分析[J]. 林业科学, 2022, 58(8): 1-9. |
| [10] | 杨菲,林毅雁,陈立欣,韩璐,吴应明,喻雅洁. 晋西黄土区油松和刺槐2种人工林内乔灌优势种的土壤水分利用及水分生态位特征[J]. 林业科学, 2022, 58(6): 1-12. |
| [11] | 李鑫玉,王敏求,袁美灵,SaneyoshiUeno,武星彤,蔡梦颖,YoshihikoTsumura,文亚峰. 东亚孑遗植物柳杉属的遗传分化及其种群进化历史[J]. 林业科学, 2022, 58(6): 66-78. |
| [12] | 潘文婷,孙建军,原勤勤,张利利,邓康桥,厉月桥. RAD-seq技术研究鹅掌楸属种源遗传多样性和遗传结构[J]. 林业科学, 2022, 58(4): 74-81. |
| [13] | 林庆芝,朱祥元,毛培利,朱琳,郭龙梅,李泽秀,曹帮华,郝迎东,谭海涛,洪丕征,卢小军. NaCl和PEG胁迫对不同大小刺槐种子萌发和幼苗生长的影响[J]. 林业科学, 2022, 58(2): 100-112. |
| [14] | 祁琳,郭龙梅,刘尤德,曹帮华,毛培利,李泽秀. 刺槐幼苗非结构性碳水化合物对NaCl胁迫的动态响应[J]. 林业科学, 2022, 58(1): 32-42. |
| [15] | 杜超群,孙晓梅,谢允慧,侯义梅. 北亚热带日本落叶松不同改良水平群体的遗传多样性[J]. 林业科学, 2021, 57(5): 68-76. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||