林业科学 ›› 2025, Vol. 61 ›› Issue (8): 80-95.doi: 10.11707/j.1001-7488.LYKX20240630
韦柳明1,2,李庆乐1,蓝阳1,卢梦婷1,马若克1,韦鹏练1,符韵林1,*()
收稿日期:
2024-10-25
出版日期:
2025-08-25
发布日期:
2025-09-02
通讯作者:
符韵林
E-mail:fylin@126.com
基金资助:
Liuming Wei1,2,Qingle Li1,Yang Lan1,Mengting Lu1,Ruoke Ma1,Penglian Wei1,Yunlin Fu1,*()
Received:
2024-10-25
Online:
2025-08-25
Published:
2025-09-02
Contact:
Yunlin Fu
E-mail:fylin@126.com
摘要:
目的: 对大花序桉叶片黄酮类化合物进行分离鉴定和活性分析,为大花序桉叶片黄酮类化合物的开发利用提供参考依据。方法: 利用大孔树脂对大花序桉叶片黄酮类化合物进行纯化,比较8种净品级大孔树脂(X-5、ADS-17、D3520、HPD100、HPD722、HC-200、HPD400和AD201)对大花序桉叶片总黄酮的吸附和解吸特性,筛选最佳纯化树脂,并对纯化参数进行优化;应用红外光谱、超高效液相色谱-质谱联用(UHPLC-MS)技术对黄酮类化合物进行结构鉴定和定量分析,对比纯化前后黄酮类化合物的体外抗氧化活性[如1,1-二苯基-2-苦基肼自由基(DPPH)清除率、2,2-连氮基-双-3-乙基苯并噻唑啉-6-磺酸二铵盐(ABTS)清除率、总还原力]、酶抑制活性(乙酰胆碱酯酶、α-葡萄糖苷酶)和抗菌活性(大肠杆菌、金黄色葡萄球菌、枯草芽孢杆菌、欧文氏菌)。结果: ADS-17树脂对大花序桉叶片总黄酮富集效果最佳,最优纯化工艺条件为:pH=3、洗脱剂乙醇体积分数50%、上样液质量浓度0.9 mg·mL–1、吸附速率2.0 mL·min?1、洗脱速率1.0 mL·min?1、洗脱剂用量65 mL,在此条件下,总黄酮提取物纯度由20.03 mg·g–1提高至36.31 mg·g–1;经红外光谱扫描发现,其含有黄酮类物质特征吸收峰,进一步利用UHPLC-MS鉴定出13种黄酮类物质;与粗提物相比,纯化物黄酮类化合物的色谱峰变得更为突出,其中杨梅黄酮、杨梅苷和槲皮素纯化后的含量比纯化前分别高1.67、1.64和3.57倍;大花序桉叶片黄酮纯化物的抗氧化能力优于粗提物,其中纯化物DPPH和ABTS的半抑制质量浓度(IC50)分别比粗提物降低0.77和11.31 μg·mL–1,与抗坏血酸(VC)的IC50差异不显著(P>0.05);纯化物对乙酰胆碱酯酶和α-葡萄糖苷酶活性的抑制能力明显提高,其IC50分别比粗提物降低45.26和1.60 μg·mL–1;纯化物的抑菌效果也强于粗提物,粗提物对大肠杆菌、金黄色葡萄球菌、欧文氏杆菌和枯草芽孢杆菌的最小抑菌质量浓度在12.50~25.00 mg·mL–1范围内,而纯化物对以上菌种的最小抑菌质量浓度均小于6.25 mg·mL–1。结论: ADS-17大孔树脂可有效富集大花序桉叶片黄酮类化合物,纯化后的总黄酮具有良好的抗氧化、酶抑制和抑菌活性。
中图分类号:
韦柳明,李庆乐,蓝阳,卢梦婷,马若克,韦鹏练,符韵林. 大花序桉叶片黄酮类物质提纯及其活性分析[J]. 林业科学, 2025, 61(8): 80-95.
Liuming Wei,Qingle Li,Yang Lan,Mengting Lu,Ruoke Ma,Penglian Wei,Yunlin Fu. Purification and Activity Analysis of Total Flavonoids from Eucalyptus cloeziana Leaves[J]. Scientia Silvae Sinicae, 2025, 61(8): 80-95.
表1
8种大孔树脂的吸附与解吸性能比较"
大孔树脂 Macroporous resin | 极性 Polarity | 比表面积 Surface area/(m2·g–1) | 孔径 Pore diameter/nm | 吸附量 Adsorption quantity/(mg·g–1) | 吸附率 Adsorption ratio (%) | 解吸量 Desorption capacity/(mg·g–1) | 解吸率 Desorption ratio (%) |
X-5 | 非极性Nonpolar | 500~600 | 29~30 | 12.15 ±0.06 | 70.09 ±0.32 | 11.21 ±0.42 | 92.25 ±3.02 |
ADS-17 | 非极性Nonpolar | 90~150 | 25~30 | 13.99 ±0.04 | 80.70 ±0.21 | 12.73 ±0.09 | 90.95 ±0.68 |
D3520 | 非极性Nonpolar | 480~520 | 85~90 | 13.66 ±0.02 | 78.79 ±0.09 | 12.44 ±0.51 | 91.06 ±3.66 |
HPD100 | 非极性Nonpolar | 650~700 | 85~90 | 13.35 ±0.16 | 77.01 ±0.91 | 12.52 ±0.67 | 93.74 ±4.07 |
HPD722 | 弱极性Weak-polar | 485~530 | 130~140 | 11.75 ±0.15 | 67.73 ±0.84 | 11.67 ±0.50 | 99.38 ±3.04 |
HC-200 | 弱极性Weak-polar | ≥500 | 45~55 | 13.37 ±0.13 | 77.08 ±0.85 | 12.68 ±0.32 | 94.88 ±1.69 |
AD201 | 中极性Middle-polar | 500~550 | 75~80 | 11.76 ±0.01 | 67.47 ±0.05 | 11.49 ±0.16 | 97.71 ±1.34 |
HPD400 | 极性 Polar | ≥200 | 100~130 | 12.96 ±0.09 | 74.75 ±0.51 | 11.78 ±0.22 | 90.87 ±2.31 |
表2
总黄酮在ADS-17树脂上的吸附动力学方程和相关参数"
动力学模型 Kinetic model | 方程式 Equation | 模型参数 Parameters |
准一级动力学模型 Pseudo-first-order | k1 = ?0.004 5 min–1 qe = 8.93 mg·g–1 R2 = 0.958 1 | |
准二级动力学模型 Pseudo-second-order | k2 = qe = 18.55 mg·g–1 R2 = 0.998 9 | |
颗粒内扩散模型 Intra-particle diffusion | k0 = C = 4.647 0 mg·g–1 R2 = 0.996 6 | |
k0 = C = 8.951 9 mg·g–1 R2 = 0.989 8 | ||
k0 = 0.072 2 g·mg–1.min–1/2 C = 15.539 0 mg·g–1 R2 = 0.880 2 |
表4
大花序桉叶片中黄酮类化合物的UHPLC-MS分析①"
序号 No. | 保留时间Retention time/min | 分子式 Molecule formula | [M+H]+ | 二级质谱碎片离子 Secondary mass spectrometry fragment ion | 化合物 Compounds | |
理论值 Theoretical | 实测值 Measured | |||||
1 | 6.690 | C15H12O7 | 花旗松素Taxifolin* | |||
2 | 7.158 | C21H20O13 | 杨梅素-3-O-半乳糖苷 Myricetin 3-O-beta-D-galactopyranoside | |||
3 | 7.823 | C15H10O8 | 杨梅黄酮 Myricetin* | |||
4 | 7.824 | C21H20O12 | 杨梅苷 Myricitrin* | |||
5 | 8.553 | C21H20O11 | 山柰酚-7-O-葡萄糖苷 Kaempferol-7-O-glucoside | |||
6 | 8.806 | C15H14O5 | 根皮素 Phloretin | |||
7 | 8.841 | C20H18O11 | 扁蓄苷 Avicularin | |||
8 | 9.012 | C21H20O11 | 槲皮素-3-鼠李糖苷 Quercitroside | |||
9 | 9.932 | C21H20O10 | 阿福豆苷 Afzelin | |||
10 | 9.940 | C15H10O6 | 山柰酚 Kaempferol | |||
11 | 9.999 | C22H22O10 | 黄豆黄苷 Glycitin | |||
12 | 10.309 | C15H10O7 | 槲皮素 Quercetin* | |||
13 | 11.580 | C16H12O7 | 异鼠李素Isorhamnetin* |
表5
粗提物和纯化提取物对供试菌株的抑菌圈和最小抑菌质量浓度①"
试验菌种Microoganisms | 粗提物Crude extract | 纯化物Purified extract | 卡那霉素Kanamycin monosulfate | ||||
ZOI/mm | MIC/(mg·mL–1) | ZOI/mm | MIC/(mg·mL–1) | ZOI/mm | |||
大肠杆菌Escherichia coli | 25.00±1.050 | 12.50 | 26.23±0.788 | 6.25 | 11.83±1.027 | ||
欧文氏杆菌Erwinia carotovora | 9.65±0.919 | 25.00 | 11.37±0.519 | 6.25 | 24.72±0.473 | ||
金黄色葡萄球菌Staphylococcus aureus | 12.50±1.225 | 12.50 | 12.80±0.471 | 3.13 | 21.72±0.781 | ||
枯草芽孢杆菌Bacillus subtilis | 11.17±0.236 | 12.50 | 16.00±0.408 | 6.25 | 24.33±0.471 |
毕 武, 申 洁, 姜保平, 等. 茶条槭叶化学成分的分离鉴定及其α-葡萄糖苷酶抑制活性研究. 中草药, 2022, 53 (20): 6380- 6387. | |
Bi W, Shen J, Jiang B P, et al. Chemical constituents from leaves of Acer tataricum subsp. ginnala and their anti-α-glucosidase activities. Chinese Traditional and Herbal Drugs, 2022, 53 (20): 6380- 6387. | |
陈洪璋, 李 伟, 肖苏尧, 等. 桉叶提取物中抗氧化活性物分离纯化、结构鉴定及其活性的研究. 现代食品科技, 2018, 34 (4): 94- 101,87. | |
Chen H Z, Li W, Xiao S Y, et al. Identification, isolation and purification of the bioactive compounds from Eucalyptus leave extract and theirs antioxidant activity. Modern Food Science and Technology, 2018, 34 (4): 94- 101,87. | |
陈健波, 黄康庭, 莫雅芳, 等. 大花序桉与乡土阔叶树种混交模式初步筛选. 广西林业科学, 2022, 51 (4): 494- 498. | |
Chen J B, Huang K T, Mo Y F, et al. Inital selection of mixed models of Eucalyptus cloeziana and native broad-leaf species. Guangxi Forestry Science, 2022, 51 (4): 494- 498. | |
冯海林, 彭崇胜, 李晓波. 铁皮石斛叶中黄酮碳苷类成分分离、鉴定及抑制α-葡萄糖苷酶活性研究. 中国药房, 2022, 33 (18): 2187- 2191.
doi: 10.6039/j.issn.1001-0408.2022.18.03 |
|
Feng H L, Peng C S, Li X B. Study on the separation and identification of flavone C-glycosides from the leaves of Dendrobium officinale and their inhibitory activities to α-gulcosidase. China Pharmacy, 2022, 33 (18): 2187- 2191.
doi: 10.6039/j.issn.1001-0408.2022.18.03 |
|
黄丽平, 周中流, 伍影瑶, 等. 桉属植物非挥发性化学成分和药理活性研究进展. 广西植物, 2022, 42 (4): 531- 542.
doi: 10.11931/guihaia.gxzw202109017 |
|
Huang L P, Zhou Z L, Wu Y Y, et al. Research progress of non-volatile chemical components from Eucalyptus genus plants and their pharmacological activities. Guihaia, 2022, 42 (4): 531- 542.
doi: 10.11931/guihaia.gxzw202109017 |
|
蒋维昕, 梁馨元, 兰 俊, 等. 大花序桉顶芽转录组SSR位点信息分析. 中南林业科技大学学报, 2021, 41 (4): 148- 155. | |
Jiang W X, Liang X Y, Lan J, et al. Bioinformatic analysis of simple sequence repeat (SSR) loci in Eucalyptus cloeziana buds transcriptome. Journal of Central South University of Forestry & Technology, 2021, 41 (4): 148- 155. | |
兰 俊, 何东宸, 李卫发, 等. 基于百度试验法的5年生与17年生大花序桉木材干燥特性对比研究. 广西林业科学, 2021, 50 (1): 83- 87. | |
Lan J, He D C, Li W F, et al. Comparison on drying characteristics of 5-year-old and 17-year-old Eucalyptus cloeziana woods based on 100 ℃ test method. Guangxi Forestry Science, 2021, 50 (1): 83- 87. | |
李昌荣, 陈 奎, 周小金. 2012. 大花序桉研究现状与发展趋势. 桉树科技, 29(2): 40−46. | |
Li C R, Chen K, Zhou X J, et al. 2012. Research status and development trend of Eucalyptus cloeziana. Eucalypt Science & Technology, 29(2): 40−46. [in Chinese] | |
李翁坤, 王艳鸽, 曾丽珊, 等. UHPLC-Q-Orbitrap-MS/MS法分析5种紫金牛属植物的黄酮类成分. 中药新药与临床药理, 2022, 33 (1): 91- 96. | |
Li W K, Wang Y G, Zeng L S, et al. Characterization of flavonoids from five species of Ardisia using UHPLC-Q-Orbitrap-MS/MS. Traditional Chinese Drug Research and Clinical Pharmacology, 2022, 33 (1): 91- 96. | |
李 颖, 吴 茵, 李 倩, 等. 水飞蓟素胶囊化学成分的UPLC-Q-TOF-MS快速鉴定与分析. 中国医院药学杂志, 2017, 37 (22): 2259- 2265. | |
Li Y, Wu Y, Li Q, et al. Quick identification and analysis of chemical constituents in silymarin capsules by UPLC-QTOF-MS. Chinese Journal of Hospital Pharmacy, 2017, 37 (22): 2259- 2265. | |
娄晓晶, 李 波, 陆婷婷, 等. 大孔树脂纯化铁皮石斛叶中总黄酮的研究. 中国现代应用药学, 2019, 36 (11): 1338- 1342. | |
Lou X J, Li B, Lu T T, et al. Purification of total flavones from Dendrobium officinale leaves by macroporous resins. Chinese Journal of Modern Applied Pharmacy, 2019, 36 (11): 1338- 1342. | |
罗 佳, 马若克, 韦鹏练, 等. 大花序桉心边材的径向和轴向的变异. 北京林业大学学报, 2021, 43 (4): 132- 140. | |
Luo J, Ma R K, Wei P L, et al. Variation on radial and axial of heartwood and sapwood in Eucalyptus cloeziana. Journal of Beijing Forestry University, 2021, 43 (4): 132- 140. | |
吕必文, 廖志鸿, 刘金炽, 等. 大花序桉不同无性系叶片挥发物化学成分. 桉树科技, 2022, 39 (3): 28- 34. | |
Lü B W, Liao Z H, Liu J C, et al. Variation among Eucalyptus cloeziana clones for chemical constituents of leaf volatiles. Eucalypt Science & Technology, 2022, 39 (3): 28- 34. | |
马嘉洁, 赵端端, 全世航, 等. 紫苏叶黄酮、多酚提取工艺优化及不同品种抗氧化活性比较. 食品工业科技, 2023, 44 (12): 344- 352. | |
Ma J J, Zhao D D, Quan S H, et al. Optimization of extraction process of flavonoids and polyphenols from Perilla frutescens (L. ) Britt leaves and comparison of antioxidant activities of different varieties. Science and Technology of Food Industry, 2023, 44 (12): 344- 352. | |
麦琬婷, 章 波, 陆建媚, 等. 超高效液相色谱-四级杆飞行时间串联质谱分析白背叶全成分. 医药导报, 2023, 42 (4): 1- 13.
doi: 10.3870/j.issn.1004-0781.2023.04.014 |
|
Ma W T, Zhang B, Lu J M, et al. Analysis of the whole composition of Mallotus apelta by ultra performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry. Herald of Medicine, 2023, 42 (4): 1- 13.
doi: 10.3870/j.issn.1004-0781.2023.04.014 |
|
牛鹤丽. 响应面法优化大蓟根总黄酮纯化工艺及其纯化前、后的抑菌活性比较. 食品工业科技, 2021, 42 (19): 211- 217. | |
Niu H L. Optimization of purification process of total flavonoids from roots of Cirsium japonicum DC. with macroporous resin by response surface analysis and comparison of its anti-bacterial activity before and after purification. Science and Technology of Food Industry, 2021, 42 (19): 211- 217. | |
孙美玲, 邱学志, 周 婧, 等. 水晶冰菜总黄酮提取工艺优化、结构表征及组成成分分析. 食品工业科技, 2022, 43 (4): 196- 204. | |
Sun M L, Qiu X Z, Zhou J, et al. Optimization of extraction process, structural characterization and component analysis of total flavonoids from Mesembryanthemum crystallinum. Science and Technology of Food Industry, 2022, 43 (4): 196- 204. | |
唐 云, 李 伟. 2015. 蓝桉的化学成分及其药理活性研究进展. 中草药, 46(6): 923−931. | |
Tang Y, Li W. 2015. Research advances on chemical constituents of Eucalyptus globulus and their pharmacological activities. Chinese Traditional and Herbal Drugs, 46(6): 923−931. [in Chinese] | |
田玉红, 刘雄民, 李利军, 等. 大花序桉叶精油的化学成分分析. 广西工学院学报, 2010, 21 (1): 1- 3.
doi: 10.3969/j.issn.1004-6410.2010.01.001 |
|
Tian Y H, Liu X M, Li L J, et al. The composition analysis of essential oil from leaves of Eucalyptus cloeziana. Journal of Guangxi University of Technology, 2010, 21 (1): 1- 3.
doi: 10.3969/j.issn.1004-6410.2010.01.001 |
|
王桂玲, 费洪荣, 赵雪梅, 等. 半枝莲和白花蛇舌草药对总黄酮的富集及其抗氧化和抑菌作用. 华西药学杂志, 2021, 36 (3): 268- 275. | |
Wang G L, Fei H R, Zhao X M, et al. Research of concentration, antioxidant and antibacterial effects of total flavonoids from the herb pair of Scutellariae barbatae and Hedyotis diffusa. West China Journal of Pharmaceutical Sciences, 2021, 36 (3): 268- 275. | |
王岳峰, 余延春, 杨国军, 等. 2004. 大叶桉黄酮类化合物的分析及抑菌活性的研究. 中医药学刊, 22(11): 2135−2143. | |
Wang Y F, Yu Y C, Yang G J, et al. 2004. Analysis of flavonids of Eucalyptus robusta. sm and study of antibacterial activation. Chinese Archives of Traditional Chinese Medicine, 22(11): 2135−2143.[in Chinese] | |
魏建萍, 石娟, 周 睿, 等. 2022. 绿碎茶水提物体外抗氧化及α-葡萄糖苷酶与乙酰胆碱酯酶抑制活性研究. 中国食品添加剂, 33(8): 64−71. | |
Wei J P, Shi J, Zhou R, et al. 2022. Study on in vitro antioxidant activities and inhibitory activities of broken green tea extract against α-glucosidase and acetylcholinesterase. China Food Additives, 33(8): 64−71. [in Chinese] | |
吴 楠, 袁嘉欢, 王文辛, 等. 超快速液相色谱-三重四极杆-线性离子阱质谱法同时测定桑寄生中多元活性成分. 分析测试学报, 2022, 41 (8): 1153- 1162. | |
Wu N, Yuan J H, Wang W X, et al. Simultaneous determination of multiple active constituents in taxilli herba by UFLC-QTRAP-MS/MS. Journal of Instrumental Analysis, 2022, 41 (8): 1153- 1162. | |
肖 岩, 马博稷, 李冰涛, 等. 青钱柳醇提物中化学成分的UHPLC-Q-TOF/MS分析. 中国实验方剂学杂志, 2022, 28 (16): 196- 204. | |
Xiao Y, Ma B J, Li B T, et al. Analysis of chemical constituents in ethanol extract of Cyclocarya paliurus dried leaves by UHPLC-Q-TOF/MS. Chinese Journal of Experimental Traditional Medical Formulae, 2022, 28 (16): 196- 204. | |
徐春晖, 王远兴. 基于UPLC-QTOF-MS结合非靶向代谢组学鉴别3种江西名茶. 食品科学, 2022, 43 (2): 316- 323.
doi: 10.7506/spkx1002-6630-20210105-042 |
|
Xu C H, Wang Y X. Non-targeted metabolomics based on ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry for discrimination of three Jiangxi famous teas. Food Science, 2022, 43 (2): 316- 323.
doi: 10.7506/spkx1002-6630-20210105-042 |
|
杨雨桐, 张卿硕, 符韵林, 等. 巴里黄檀心材色素成分及其稳定性和抗氧化性. 林业科学, 2021, 57 (3): 126- 134. | |
Yang Y T, Zhang Q S, Fu Y L, et al. Components, stability and antioxidant activity of pigment from Dalbergia bariensis heartwood. Scientia Silvae Sinicae, 2021, 57 (3): 126- 134. | |
余玉珠, 苏远玉, 陆艳柳, 等. 大花序桉种源幼龄材木材物理性质变异. 桉树科技, 2019, 36 (2): 9- 15.
doi: 10.3969/j.issn.1674-3172.2019.02.002 |
|
Yu Y Z, Su Y Y, Lu Y L, et al. Provenance variation in Eucalyptus cloeziana for physical properties of juvenile wood. Eucalypt Science & Technology, 2019, 36 (2): 9- 15.
doi: 10.3969/j.issn.1674-3172.2019.02.002 |
|
张 露, 王红红, 杨斯涵, 等. 基于UPLC-QTOF-MS/MS技术分析荷叶乙酸乙酯相中主要化学成分. 食品科学, 2019, 40 (22): 229- 235.
doi: 10.7506/spkx1002-6630-20190101-012 |
|
Zhang L, Wang H H, Yang S H, et al. Characterization of chemical constituents in ethyl acetate fraction of Lotus leaves by ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry. Food Science, 2019, 40 (22): 229- 235.
doi: 10.7506/spkx1002-6630-20190101-012 |
|
张卿硕, 韦柳明, 杨雨桐, 等. 大果紫檀心材色素纯化及成分研究. 北京林业大学学报, 2020, 10 42 (4): 126- 136. | |
Zhang Q S, Wei L M, Yang Y T, et al. Purification and composition of heartwood pigment of Pterocarpus macrocarpus. Journal of Beijing Forestry University, 2020, 10 42 (4): 126- 136. | |
郑燕菲, 刘雄民, 郭占京, 等. 2014. 巨尾桉叶总黄酮提取条件及其抗氧化抑菌研究. 食品工业科技, 35(13): 120−123. | |
Zheng Y F, Liu X M, Guo Z J, et al. 2014. Extraction, antioxidant activity and antibacterial effect of total flavonoids from leaves of Eucalyptus Grandis × E. Urophylla. Science and Technology of Food Industry, 35(13): 120−123. [in Chinese] | |
郅丽超, 张琳依, 梁馨元, 等. 天然活性成分对α-葡萄糖苷酶抑制作用的研究进展. 食品安全质量检测学报, 2021, 12 (6): 2276- 2282. | |
Zhi L C, Zhang L Y, Liang X Y, et al. Research progress on the inhibitory effect of natural active ingredients on α-glucosidase. Journal of Food Safety & Quality, 2021, 12 (6): 2276- 2282. | |
Ang L Z P, Hashim R, Sulaiman S F, et al. In vitro antioxidant and antidiabetic activites of Gluta torquata. Industrial Crops and Products, 2015, 76, 755- 760.
doi: 10.1016/j.indcrop.2015.07.065 |
|
Chandorkar N, Tambe S, Amin P, et al. A systematic and comprehensive review on current understanding of the pharmacological actions, molecular mechanisms, and clinical implications of the genus Eucalyptus. Phytomedicine Plus, 2021, 1 (4): 100089.
doi: 10.1016/j.phyplu.2021.100089 |
|
Che Zain M S, Lee S Y, Teo C Y, et al. Adsorption and desorption properties of total flavonoids from oil palm (Elaeis guineensis jacq. ) mature leaf on macroporous adsorption resins. Molecules, 2020, 25 (4): 778.
doi: 10.3390/molecules25040778 |
|
Fu Y L, Zhang Y L, Zhang R T. Purification and antioxidant properties of triterpenic acids from blackened jujube (Ziziphus jujuba Mill. ) by macroporous resins. Food Science and Nutrition, 2021, 9 (9): 5070- 5082. | |
Jiang H, Li J, Chen L, et al. Adsorption and desorption of chlorogenic acid by macroporous adsorbent resins during extraction of Eucommia ulmoides leaves. Industrial Crops and Products, 2020, 149, 112336.
doi: 10.1016/j.indcrop.2020.112336 |
|
Li M Y, Gao X, Lan M X, et al. Inhibitory activities of flavonoids from Eupatorium adenophorum against acetylcholinesterase. Pesticide Biochemistry and Physiology, 2020, 170, 104701.
doi: 10.1016/j.pestbp.2020.104701 |
|
Liu B Y, Ouyang J, Yuan X F, et al. Adsorption properties and preparative separation of phenylethanoid glycosides from Cistanche deserticola by use of macroporous resins. Journal of Chromatography B, 2013, 937, 84- 90. | |
Liu W, Zhang S, Zu Y G, et al. Preliminary enrichment and separation of genistein and apigenin from extracts of pigeon pea roots by macroporous resins. Bioresource Technology, 2010, 101 (12): 4667- 4675. | |
Lü C, Yang J, Liu R, et al. A comparative study on the adsorption and desorption characteristics of flavonoids from honey by six resins. Food Chemistry, 2018, 268, 424- 430.
doi: 10.1016/j.foodchem.2018.06.100 |
|
Ma R K, Luo J, Qiao M J, et al. Chemical composition of extracts from Dalbergia odorifera heartwood and its correlation with color. Industrial Crops and Products, 2022, 180, 114728.
doi: 10.1016/j.indcrop.2022.114728 |
|
Niculae M, Hanganu D, Oniga I, et al. Phytochemical profile and antimicrobial potential of extracts obtained from Thymus marschallianus Willd. Molecules, 2019, 24 (17): 3101.
doi: 10.3390/molecules24173101 |
|
Okba M M, El Gedaily R A, Ashour R M. UPLC–PDA–ESI–qTOF-MS profiling and potent anti-HSV-II activity of Eucalyptus sideroxylon leaves. Journal of Chromatography B, 2017, 1068, 335- 342. | |
Park J J, Lee W Y. Adsorption and desorption characteristics of a phenolic compound from Ecklonia cava on macroporous resin. Food Chemistry, 2021, 338, 128150.
doi: 10.1016/j.foodchem.2020.128150 |
|
Sarker S D, Nahar L, Kumarasamy Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods, 2007, 42 (4): 321- 324.
doi: 10.1016/j.ymeth.2007.01.006 |
|
Shen D B, Labreche F, Wu C E, et al. Ultrasound-assisted adsorption/desorption of jujube peel flavonoids using macroporous resins. Food Chemistry, 2022, 368, 130800.
doi: 10.1016/j.foodchem.2021.130800 |
|
Shin H S, Kim J H. Isotherm, kinetic and thermodynamic characteristics of adsorption of paclitaxel onto Diaion HP-20. Process Biochemistry, 2016, 51 (7): 917- 924.
doi: 10.1016/j.procbio.2016.03.013 |
|
Sun L J, Guo Y R, Fu C C, et al. Simultaneous separation and purification of total polyphenols, chlorogenic acid and phlorizin from thinned young apples. Food Chemistry, 2013, 136 (2): 1022- 1029. | |
Takahashi T, Kokubo R, Sakaino M. Antimicrobial activities of Eucalyptus leaf extracts and flavonoids from Eucalyptus maculata. Letters in Applied Microbiology, 2004, 39 (1): 60- 64.
doi: 10.1111/j.1472-765X.2004.01538.x |
|
Tan I A W, Ahmad A L, Hameed B H. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials, 2008, 154 (1/2/3): 337- 346. | |
Tian Y H, Dong F, Zhou X C, et al. Repellent, insecticidal and antimicrobial activities of leaf essential oils from three Eucalyptus species. Chemistry & Biodiversity, 2020, 17 (2): e1900580. | |
Uriarte-Pueyo I, Calvo M I. Structure–activity relationships of acetylated flavone glycosides from Galeopsis ladanum L. (Lamiaceae). Food Chemistry, 2009, 120 (3): 679- 683. | |
Usman L A, Oguntoye O S, Ismaeel R O. Effect of seasonal variation on chemical composition, antidiabetic and antioxidant potentials of leaf essential oil of Eucalyptus globulus L. Journal of Essential Oil Bearing Plants, 2020, 23 (6): 1314- 1323.
doi: 10.1080/0972060X.2020.1862710 |
|
Vidshi A, Abhilasha S, Sudeshna M, et al. 2021. Comparative analysis ofantioxidant and antiproliferative activities of crude and purifiedflavonoid enriched fractions of pods/seeds of two desert legumesProsopis cineraria and Cyamopsis tetragonoloba. Heliyon, 7(6):e07304. | |
Wang X Y, Su J Q, Chu X L, et al. Adsorption and desorption characteristics of total flavonoids from Acanthopanax senticosus on macroporous adsorption resins. Molecules, 2021, 26 (14): 4162.
doi: 10.3390/molecules26144162 |
|
Wang X Y, Tang Y, Sun Y X, et al. Extraction of flavonoids and kinetics of purification by macroporous resins from quinoa. Journal of Nanoparticle Research: An Interdisciplinary Forum for Nanoscale Science and Technology, 2020, 22 (4): 4162. | |
Wu M Q, Xu J Y, Zhang H, et al. Purification and identification of flavonoid molecules from Rosa setate × Rosa rugosa waste extracts and evaluation of antioxidant, antiproliferative and antimicrobial activities. Molecules, 2022, 27 (14): 4379.
doi: 10.3390/molecules27144379 |
|
Xi L S, Mu T H, Sun H N. Preparative purification of polyphenols from sweet potato (Ipomoea batatas L.) leaves by AB-8 macroporous resins. Food Chemistry, 2015, 172, 166- 174. | |
Xie Y X, Yang W J, Chen X Q, et al. Inhibition of flavonoids on acetylcholine esterase: binding and structure–activity relationship. Food & Function, 2014, 5 (10): 2582- 2589. | |
Yang Q Y, Zhao M M, Lin L Z. Adsorption and desorption characteristics of adlay bran free phenolics on macroporous resins. Food Chemistry, 2016, 194, 900- 907.
doi: 10.1016/j.foodchem.2015.08.070 |
|
Yang Z Z, Tang H T, Shao Q, et al. 2018. Enrichment and purification of thebioactive flavonoids from flower of Abelmoschus manihot (L.) medicusing macroporous resins. Molecules, 23(10): 2649. | |
Yin L J, Han H Y, Zheng X, et al. Flavonoids analysis and antioxidant, antimicrobial, and anti-inflammatory activities of crude and purified extracts from Veronicastrum latifolium. Industrial Crops and Products, 2019, 137, 652- 661.
doi: 10.1016/j.indcrop.2019.04.007 |
|
Zhang B, Yang R Y, Zhao Y, et al. Separation of chlorogenic acid from honeysuckle crude extracts by macroporous resins. Journal of Chromatography B, 2008, 867 (2): 253- 258. | |
Zeng L, Ding H F, Hu X, et al. Galangin inhibits α-glucosidase activity and formation of non-enzymatic glycation products. Food Chemistry, 2019, 271, 70- 79.
doi: 10.1016/j.foodchem.2018.07.148 |
[1] | 周鹏,李湘洲. 枳实黄酮提取、生物活性及其改性研究进展[J]. 林业科学, 2024, 60(12): 168-176. |
[2] | 战鑫,庄敏,李国华,尹淑艳. 7种非悬铃木方翅网蝽寄主植物叶片粗提物对其成虫的生物活性[J]. 林业科学, 2022, 58(7): 156-162. |
[3] | 王嘉,梁晓洁,高暝,吴立文,赵耘霄,汪阳东,黄世清,张永志,傅火勇,陈益存. 千年桐根部黄酮类化合物生物合成对枯萎病菌侵染的响应[J]. 林业科学, 2022, 58(2): 159-170. |
[4] | 杨雨桐,张卿硕,符韵林,孙静. 巴里黄檀心材色素成分及其稳定性和抗氧化性[J]. 林业科学, 2021, 57(3): 126-134. |
[5] | 周婧, 杨琦, 李钢, 徐静. 红树属植物内生真菌多样性及其代谢产物研究进展[J]. 林业科学, 2019, 55(1): 89-102. |
[6] | 魏琦, 王淑英, 汤锋, 张华新, 喻谨, 岳永德. 高效液相色谱法同时测定竹叶中13种黄酮类化合物[J]. 林业科学, 2015, 51(8): 81-87. |
[7] | 荆小院 张金桐 骆有庆 宗世祥 柳培华 贾俊仙. 沙柳木蠹蛾性诱剂的化学合成与林间生物活性评价[J]. 林业科学, 2010, 46(4): 87-92. |
[8] | 张金桐 骆有庆 宗世祥 李占文. 沙蒿木蠹蛾性诱剂的分析合成与生物活性[J]. 林业科学, 2009, 12(9): 106-110. |
[9] | 王燕 师光禄 吴振宇 王有年. 牵牛子提取物对朱砂叶螨的生物活性[J]. 林业科学, 2009, 12(3): 79-84. |
[10] | 曹挥;王有年 张铁强 李奕松 刘素琪 李向花 师光禄. 地肤不同部位提取物对山楂叶螨活性的研究*[J]. 林业科学, 2007, 43(9): 27-30. |
[11] | 樊艳平 赵全保 姚延梼. 不同覆盖处理对元宝枫叶生物活性物质含量的影响[J]. 林业科学, 2007, 43(1): 50-54. |
[12] | 曹挥 刘素琪 赵莉蔺 李向花 师光禄;. 万寿菊提取物对山楂叶螨的触杀活性及酶活性的比较[J]. 林业科学, 2006, 42(2): 125-128. |
[13] | 曹挥 刘素琪 赵莉蔺 师光禄 曾鑫年. 瑞香狼毒提取物对山楂叶螨的生物活性及酶活性影响[J]. 林业科学, 2003, 39(1): 98-102. |
[14] | 程水源 王燕 李俊凯 顾曼如 束怀瑞. 银杏叶黄酮类化合物合成代谢规律的研究[J]. 林业科学, 2002, 38(5): 60-63. |
[15] | 程水源 顾曼如 束怀瑞. 银杏叶黄酮研究进展[J]. 林业科学, 2000, 36(6): 110-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||