|
陈建勋, 王晓峰. 2002. 植物生理学实验指导. 广州: 华南理工大学出版社.
|
|
Chen J X, Wang X F. 2002. Experimental instruction of plant physiology. Guangzhou: South China University of Technology Press. [in Chinese]
|
|
何如梦, 王百田, 于显威, 等. 晋西黄土区油松林的生长释放与生长抑制. 应用与环境生物学报, 2018, 24 (6): 1204- 1210.
|
|
He R M, Wang B T, Yu X W, et al. Growth release and growth inhibition of Pinus tabuliformis forest in the Loess Plateau of western Shanxi Province, China. Chinese Journal of Applied and Environmental Biology, 2018, 24 (6): 1204- 1210.
|
|
洪琮浩, 洪 震, 雷小华, 等. 氮添加对长序榆C、N、P养分含量及非结构性碳水化合物含量的影响. 林业科学, 2020, 56 (6): 186- 192.
|
|
Hong C H, Hong Z, Lei X H, et al. Effects of nitrogen addition on contents of C, N and P nutrient and non-structural carbohydrate in Ulmus elongata. Scientia Silvae Sinicae, 2020, 56 (6): 186- 192.
|
|
李合生. 2000. 植物生理生化实验原理和技术. 北京: 高等教育出版社.
|
|
Li H S. 2000. Principles and techniques of plant physiological and biochemical experiment. Beijing: Higher Education Press. [in Chinese]
|
|
李 娜. 2014. 落叶松幼苗对干旱胁迫及氮添加的生理生态响应. 哈尔滨: 东北林业大学.
|
|
Li N. 2014. Physiological and ecological responses of Larix gmelinii seedlings under soil drought stress and different nitrogen levels. Harbin: Northeast Forestry University. [in Chinese]
|
|
苏 炜, 陈 平, 吴 婷, 等. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响. 植物生态学报, 2023, 47 (8): 1094- 1104.
doi: 10.17521/cjpe.2022.0473
|
|
Su W, Chen P, Wu T, et al. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings. Chinese Journal of Plant Ecology, 2023, 47 (8): 1094- 1104.
doi: 10.17521/cjpe.2022.0473
|
|
张聪惠. 2022. 黄土高原典型草原植被群落和土壤微生物养分利用特征对降水和氮沉降的响应. 兰州: 兰州大学.
|
|
Zhang C H. 2022. Responses of vegetation communities and soil microbial nutrient characteristics to precipitation and nitrogen deposition in typical steppe on the Loess Plateau. Lanzhou: Lanzhou University. [in Chinese]
|
|
张 宏, 曾 雄, 王爱莲, 等. 不同施氮量对棉花产量、养分吸收及氮素利用的影响. 新疆农业科学, 2021, 58 (9): 1656- 1664.
|
|
Zhang H, Zeng X, Wang A L, et al. Effects of different nitrogen application rates on yield, nutrient uptake and nitrogen utilization of cotton in southern Xinjiang. Xinjiang Agricultural Sciences, 2021, 58 (9): 1656- 1664.
|
|
Chen X, Zhao P, Ouyang L, et al. Whole-plant water hydraulic integrity to predict drought-induced Eucalyptus urophylla mortality under drought stress. Forest Ecology and Management, 2020, 468, 118179.
doi: 10.1016/j.foreco.2020.118179
|
|
Du D S, Jiao L, Wu X, et al. 2024. Drought determines the growth stability of different dominant conifer species in central Asia. Global and Planetary Change, 234: 104370.
|
|
Dziedek C, von Oheimb G, Calvo L, et al. Does excess nitrogen supply increase the drought sensitivity of European beech (Fagus sylvatica L. ) seedlings?Plant Ecology, 2016, 217 (4): 393- 405.
|
|
Eastman B A, Adams M B, Brzostek E R, et al. Altered plant carbon partitioning enhanced forest ecosystem carbon storage after 25 years of nitrogen additions. New Phytologist, 2021, 230 (4): 1435- 1448.
doi: 10.1111/nph.17256
|
|
Egilla J N, Davies F T, Boutton T W. Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica, 2005, 43 (1): 135- 140.
doi: 10.1007/s11099-005-5140-2
|
|
Gersony J T, Hochberg U, Rockwell F E, et al. Leaf carbon export and nonstructural carbohydrates in relation to diurnal water dynamics in mature oak trees. Plant Physiology, 2020, 183 (4): 1612- 1621.
doi: 10.1104/pp.20.00426
|
|
Jaleel C A, Manivannan P, Sankar B, et al. Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloids and Surfaces B: Biointerfaces, 2007, 60 (2): 201- 206.
doi: 10.1016/j.colsurfb.2007.06.010
|
|
Kishor P B K, Sangam S, Amrutha R N, et al. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants:its implications in plant growth and abiotic stress tolerance. Current Science, 88(3): 424–438.
|
|
Li W B, Hartmann H, Adams H D, et al. The sweet side of global change-dynamic responses of non-structural carbohydrates to drought, elevated CO2, and nitrogen fertilization in tree species. Tree Physiology, 2018, 38 (11): 1706- 1723.
|
|
Mahmood T, Abdullah M, Ahmar S, et al. Incredible role of osmotic adjustment in grain yield sustainability under water scarcity conditions in wheat (Triticum aestivum L). Plants, 2020, 9 (9): 1208.
doi: 10.3390/plants9091208
|
|
Ozturk M, Turkyilmaz Unal B, García-Caparrós P, et al. Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum, 2021, 172 (2): 1321- 1335.
doi: 10.1111/ppl.13297
|
|
Peng Y H, Chen K L, Wang G L, et al. Nitrogen addition regulates the growth of Pinus tabuliformis by changing distribution patterns of endogenous hormones in different organs. New Forests, 2023, 54 (5): 853- 865.
doi: 10.1007/s11056-022-09947-5
|
|
Savi T, Casolo V, Dal Borgo A, et al. Drought-induced dieback of Pinus nigra: a tale of hydraulic failure and carbon starvation. Conservation Physiology, 2019, 7 (1): coz012.
|
|
Shi H L, Ma W J, Song J Y, et al. Physiological and transcriptional responses of Catalpa bungei to drought stress under sufficient-and deficient-nitrogen conditions. Tree Physiology, 2017, 37 (11): 1457- 1468.
doi: 10.1093/treephys/tpx090
|
|
Sigala J A, Uscola M, Oliet J A, et al. Drought tolerance and acclimation in Pinus ponderosa seedlings: the influence of nitrogen form. Tree Physiology, 2020, 40 (9): 1165- 1177.
doi: 10.1093/treephys/tpaa052
|
|
Sperry J S, Donnelly J R, Tyree M T. 1988. A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell and Environment, 11(1): 35–40.
|
|
Sperry J S, Love D M. What plant hydraulics can tell us about responses to climate-change droughts. New Phytologist, 2015, 207 (1): 14- 27.
doi: 10.1111/nph.13354
|
|
Tomasella M, Petrussa E, Petruzzellis F, et al. The possible role of non-structural carbohydrates in the regulation of tree hydraulics. International Journal of Molecular Sciences, 2020, 21 (1): 144.
|
|
Wang R Z, Yun L L, Mao Y X, et al. Nitrogen deposition alters drought-induced changes in biomass and nonstructural carbohydrates allocation patterns of Quercus mongolica seedlings. Scientia Horticulturae, 2024, 325, 112573.
doi: 10.1016/j.scienta.2023.112573
|
|
Wang X, Wu G Y, Li D Y, et al. Moderate nitrogen deposition alleviates drought stress of Bretschneidera sinensis. Forests, 2023, 14 (1): 137.
doi: 10.3390/f14010137
|
|
Zhang D, Jing H, Wang G L. Responses of non-structural carbohydrates content in leaves of different plant species in Pinus tabuliformis plantation to nitrogen addition. The Journal of Applied Ecology, 2019, 30 (2): 489- 495.
|
|
Zuo K Y, Fan L L, Guo Z W, et al. Aboveground biomass component plasticity and allocation variations of bamboo (Pleioblastus amarus) of different regions. Forests, 2024, 15 (1): 43.
|