欢迎访问林业科学,今天是

林业科学 ›› 2018, Vol. 54 ›› Issue (11): 127-133.doi: 10.11707/j.1001-7488.20181118

• 论文与研究报告 • 上一篇    下一篇

基于CNN的木材内部CT图像缺陷辨识

陈龙现, 葛浙东, 罗瑞, 刘传泽, 刘晓平, 周玉成   

  1. 山东建筑大学信息与电气工程学院 济南 250101
  • 收稿日期:2018-04-02 修回日期:2018-08-04 出版日期:2018-11-25 发布日期:2018-12-04
  • 基金资助:
    泰山学者优势特色学科人才团队(2015162);山东建筑大学博士基金"基于X射线的木结构建筑用材无损检测系统研究"(XNBS1622)。

Identification of CT Image Defects in Wood Based on Convolution Neural Network

Chen Longxian, Ge Zhedong, Luo Rui, Liu Chuanze, Liu Xiaoping, Zhou Yucheng   

  1. School of Information and Electrical Engineering, Shandong Jianzhu University Jinan 250101
  • Received:2018-04-02 Revised:2018-08-04 Online:2018-11-25 Published:2018-12-04

摘要: [目的]为获取木材内部构造形态,提高木材内部缺陷识别率,依据获得的计算机断层扫描图像,提出一种基于卷积神经网络(CNN)的木材内部缺陷辨识方法,以实现木材的高效化自动分类。[方法]首先,利用课题组自行开发的计算机断层扫描系统,采集样本木材内部CT图像800幅;然后,对样本图像进行处理,随机选取700幅原始样本图像,从中截取出单个缺陷区域和正常木材断层区域样本图像20 000幅,并利用图像增强等算法将数据集扩充到70 000幅,标准化图像大小为28×28像素,分为正常、裂纹、虫眼和节子图像共4类,取60 000幅图像作为训练集,10 000幅图像作为测试集,剩余的100幅原始样本图像用于试验验证。[结果]通过60 000幅图像来训练网络模型,对测试集10 000幅图像进行分类,分类正确率达99.3%;利用训练得到的网络模型对100幅原始样本图像进行验证,平均分类正确率为95.87%。[结论]基于卷积神经网络的木材内部CT图像缺陷辨识算法,克服了传统识别方法图像预处理繁琐、训练方法复杂、训练参数过多、耗时过多等问题,具有精度高、复杂度小、鲁棒性较好等优点,且辨识正确率和辨识时间都比现行常规算法精准并用时短,是一种无损、高效、准确的辨识分类方法。

关键词: 木材, 无损检测, 卷积神经网络, 图像辨识

Abstract: [Objective] In order to obtain the internal structure form of wood and improve the identification rate of internal defects in wood,according to the computed tomography image,a method of identification and classification of wood interior defects based on convolution neural network algorithm is proposed,which realizes the automatic classification of wood efficiently.[Method] First of all, the internal cross-sectional CT images of wood samples on independent design were obtained, and the computed tomography system equipment was developed. Then,700 original sample images are randomly select after processed these sample images,from which 20 000 sample images of single defect region can be intercepted. The data set is expanded to 70 000 images by image enhancement algorithm. The size of normalized image is 28×28 pixel,and it can be divided into four parts:normal,cracked,insect hole and knot,from which 60 000 pictures of them are taken as training set,and the remaining 10 000 pictures are taken as test set. The remaining 100 images are used to implement doing experimental test.[Result] 60 000 sample images are used to train the network model,and the 10 000 sample images are classified. The classification accuracy is up to 99.3%. The accuracy of the average classification is 95.87% by verifying the remaining 100 original sample data.[Conclusion] The classification method that based on convolution neural network algorithm overcomes the problem of complicated image preprocessing,complex training method,numerous training parameters and amounts of time consuming and so on. It has the advantages of high precision,low complexity and good robustness. The identification accuracy and time are more accurate and shorter than those of the current conventional algorithms. It is a non-destructive,efficient and accurate classification method.

Key words: wood, nondestructive testing, convolution neural network, image identification

中图分类号: