陈耀丹,王连明. 2016. 基于卷积神经网络的人脸识别方法.东北师大学报:自然科学版,48(2):70-76. (Chen Y D,Wang L M. 2016. Convolutional neural network for face recognition method. Journal of Northeast Normal University:Natural Science Edition, 48(2):70-76.[in Chinese]) 傅隆生,冯亚利,Elkamil T,等. 2018. 基于卷积神经网络的田间多簇猕猴桃图像识别方法.农业工程学报, 34(2):205-211. (Fu L S, Wen Y L, Elkamil T, et al. 2018. Image recognition method of multi-cluster kiwifruit in field based on convolutional neural networks. Transactions of the Chinese Society of Agricultural Engineering, 34(2):205-211.[in Chinese]) 葛浙东,侯晓鹏,鲁守银,等. 2016. 基于反投影坐标快速算法的木材CT检测系统研究.农业机械学报,47(3):335-341. (Ge Z D,Hou X P,Lu S Y,et al. 2016. Wood CT detection system based on fast algorithm of inverse projection coordinate. Transactions of the Chinese Society of Agricultural Machinery,47(3):335-341,327.[in Chinese]) 马 旭,刘应安,业 宁,等. 2017. 基于核PCA与SVM算法的木材缺陷识别. 常州大学学报:自然科学版,29(3):60-68. (Ma X,Liu Y A,Ye N,et al.2017.Application of KPCA and SVM to wood defect recognition. Journal of Changzhou University:Natural Science Edition,29(3):60-68.[in Chinese]) 牟洪波. 2006. 基于人工神经网络的木材缺陷检测研究. 哈尔滨:东北林业大学硕士学位论文. (Mou H B. 2006. Study on wood defects testing base on artificial neural network. Harbin:MS thesis of Northeast Forestry University.[in Chinese]) 黎奉薪. 2016. 基于深层卷积神经网络的物体识别研究. 哈尔滨:哈尔滨工业大学硕士学位论文. (Li F X. 2016. Research on object recognition based on deep convolution neural network. Harbin:MS thesis of Harbin Institute of Technology.[in Chinese]) 李思泉,张轩雄. 2018. 基于卷积神经网络的人脸表情识别研究.软件导刊,17(1):28-31. (Li S Q,Zhang X X. 2018. Study on face expression recognition based on convolutional neural network. Software Guide,17(1):28-31.[in Chinese]) 刘璐璐. 2017. 基于卷积神经网络的人体行为识别研究. 北京:中国科学技术大学硕士学位论文. (Liu L L. 2017. Research on human body action recognitiom by convolutional neural networks. Beijing:MS thesis of Univercity of Science and Technology of China.[in Chinese]) 戚大伟,牟洪波. 2013. 基于Hu不变矩和BP神经网络的木材缺陷检测.东南大学学报:自然科学版,43(s1):63-66. (Qi D W,Mou H B.2013. Detection of wood defects types based on Hu invariant moments and BP neural network. Journal of Southeast University:Natural Science Edition,43(s1):63-66.[in Chinese]) 王再超,李光辉,冯海林,等. 2015. 基于应力波和支持向量机的木材缺陷识别分类方法.南京林业大学学报:自然科学版,39(3):130-136. (Wang Z C,Li G H,Feng H L,et al. 2015. A method of wood defect identification and classification based on stress wave and SVM. Journal of Nanjing Forestry University:Natural Science Edition,39(3):130-136.[in Chinese]) 杨 洋,申世杰. 2010.木材无损检测技术研究历史、现状和展望.科技导报,28(14):113-117. (Yang Y,Shen S J. 2010. History,present state and future of non-destructive testing for wood. Science & Technology Review,28(14):113-117.[in Chinese]) 张 红,马 静. 2017. 基于卷积神经网络的手写数字识别算法.电子技术与软件工程,(22):176. (Zhang H,Ma J. 2017. Handwritten numeral recognition algorithm based on convolutional neural networks. Electronic Technology & Software Engineering,(22):176.[in Chinese]) 张 甜,程小武,陆伟东,等. 2016 超声波法检测木材内部孔洞缺陷的研究.西南林业大学学报,36(1):121-125. (Zhang T,Cheng X W,Lu W D,et al. 2016. Experimental study on testing internal hole defects of wood by ultrasonic method. Journal of Southwest Forestry University,36(1):121-125.[in Chinese]) Alwzwazy H,Albehadili H,Alwan Y,et al. 2016. Handwritten digit recognition using convolutional neural networks. International Journal of Innovative Research in Computer & Communication Engineering,4(2):1101-1106. Dobhal T,Shitole V,Thomas G,et al. 2015. Human activity recognition using binary motion image and deep learning. Procedia Computer Science,58:178-185. Ronao C A,Cho S B. 2016. Human activity recognition with smartphone sensors using deep learning neural networks. Expert Systems with Applications,59:235-244. Singh R,Om H. 2017. Newborn face recognition using deep convolutional neural network. Multimedia Tools & Applications,76(18):19005-19015. Yang W,Jin L,Tao D,et al. 2016. Dropsample:a new training method to enhance deep convolutional neural networks for large-scale unconstrained handwritten Chinese character recognition. Pattern Recognition,58(4):190-203. |