|
付新华, 李 宁, 郭渊昊, 等. 橡胶超弹性测试及其对轮胎有限元计算结果的影响. 轮胎工业, 2020, 40 (1): 56- 61.
|
|
Fu X H, Li N, Guo Y H, et al. Rubber superelasticity test and its influence on tire finite element calculation results. Tire Industry, 2020, 40 (1): 56- 61.
|
|
刘吉成, 李 斌, 华凌云, 等. 轮式移动机器人车轮牵引性能离散元仿真. 机械制造, 2014, 52 (8): 10- 12.
|
|
Liu J C, Li B, Hua L Y, et al. Discrete element simulation of wheel traction performance of wheeled mobile robot. Machinery, 2014, 52 (8): 10- 12.
|
|
刘九庆, 朱斌海, 杨春梅, 等. 植树机挖穴机构动态性能分析与试验探究. 林业科学, 2022, 58 (12): 62- 73.
|
|
Liu J Q, Zhu B H, Yang C M, et al. Dynamic performance analysis and experimental investigation of hole digging mechanism of tree planting machine. Scientia Silvae Sinicae, 2022, 58 (12): 62- 73.
|
|
苏永涛, 刘滨凡, 王 伟. 林业机器人车轮与土壤相互作用力学性能仿真. 东北林业大学学报, 2017, 45 (12): 72- 75, 82.
|
|
Su Y T, Liu B F, Wang W. Simulation on mechanical performance of wheel forest soil interaction in forestry robot. Journal of Northeast Forestry University, 2017, 45 (12): 72- 75, 82.
|
|
王 伟, 李超艺, 刘九庆, 等. 地空两用农业信息采集机器人行走机构仿真. 农机化研究, 2019, 41 (6): 26- 31.
|
|
Wang W, Li C Y, Liu J Q, et al. Amphibious agricultural information collection robot. Journal of Agricultural Mechanization Research, 2019, 41 (6): 26- 31.
|
|
武 涛, 黄伟凤, 陈学深, 等. 考虑颗粒间黏结力的黏性土壤离散元模型参数标定. 华南农业大学学报, 2017, 38 (3): 93- 98.
|
|
Wu T, Huang W F, Chen X S, et al. Calibration of discrete element model parameters for cohesive soil considering the cohesion between particles. Journal of South China Agricultural University, 2017, 38 (3): 93- 98.
|
|
谢 斌, 罗振豪, 宋正河, 等. 非道路车辆轮胎-土壤相互作用建模方法及试验技术综述. 农业工程学报, 2022, 38 (11): 51- 63.
|
|
Xie B, Luo Z H, Song Z H, et al. Review of off-road vehicle tire-soil interaction modeling methods and experimental techniques. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38 (11): 51- 63.
|
|
徐卫潘, 曾海洋, 蒋 超, 等. 越野车轮胎卵石路面牵引性能有限元与离散元耦合仿真及试验验证. 兵工学报, 2019, 40 (9): 1961- 1968.
|
|
Xu W P, Zeng H Y, Jiang C, et al. Simulation of tractive performance of off-road tire on gravel road by combined finite element-discrete element method and experimental validation. Acta Armamentarii, 2019, 40 (9): 1961- 1968.
|
|
张 锐, 吉巧丽, 张四华, 等. 轮面曲率半径对沙地刚性轮沉陷性能影响研究. 农业机械学报, 2016, 47 (11): 341- 349.
|
|
Zhang R, Ji Q L, Zhang S H, et al. Effect of wheel surface curvature radius on sinkage performance of sand rigid wheel. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47 (11): 341- 349.
|
|
Arachchi N M L W, Abegunasekara C D, Premarathna W A A S, et al. 2021. Finite element modeling and simulation of rubber based products: application to solid resilient tire//Dissanayake R, Mendis P, Weerasekera K, et al. ICSECM 2019. Singapore: Springer, 517-531.
|
|
Bergerman M, Billingsley J, Reid J, et al. 2016. Robotics in agriculture and forestry//Springer Handbooks. Cham: Springer International Publishing, 1463-1492.
|
|
Castañeda E A, Asmat A D, Pejerrey M J, et al. Generative design and DEM-FEA simulations for optimization and validation of a bio-inspired airless tire-wheel system for land-based space planetary exploration robot. 2022 International Conference on Advanced Robotics and Mechatronics (ICARM). Guilin, 2022, China, IEEE, 929- 936.
|
|
Chen X Z, Elliott J A. On the scaling law of JKR contact model for coarse-grained cohesive particles. Chemical Engineering Science, 2020, 227, 115906.
doi: 10.1016/j.ces.2020.115906
|
|
De Pue J, Lamandé M, Cornelis W. DEM simulation of stress transmission under agricultural traffic Part 2: Shear stress at the tyre-soil interface. Soil and Tillage Research, 2020a, 203, 104660.
doi: 10.1016/j.still.2020.104660
|
|
De Pue J, Lamandé M, Schjønning P, et al. DEM simulation of stress transmission under agricultural traffic Part 3: evaluation with field experiment. Soil and Tillage Research, 2020b, 200, 104606.
doi: 10.1016/j.still.2020.104606
|
|
Morita M, Nishida T, Arita Y, et al. Development of robot for 3D measurement of forest environment. Journal of Robotics and Mechatronics, 2018, 30 (1): 145- 154.
doi: 10.20965/jrm.2018.p0145
|
|
Mudarisov S, Farkhutdinov I, Khamaletdinov R, et al. Evaluation of the significance of the contact model particle parameters in the modelling of wet soils by the discrete element method. Soil and Tillage Research, 2022, 215 (1): 105228.
|
|
Nakashima H, Takatsu Y. Analysis of tire tractive performance on deformable terrain by finite element-discrete element method. Journal of Computational Science and Technology, 2008, 2 (4): 423- 434.
doi: 10.1299/jcst.2.423
|
|
Nishiyama K, Nakashima H, Yoshida T, et al. 2D FE–DEM analysis of tractive performance of an elastic wheel for planetary rovers. Journal of Terramechanics, 2016, 64, 23- 35.
doi: 10.1016/j.jterra.2015.12.004
|
|
Oliveira L F P, Moreira A P, Silva M F. Advances in forest robotics: a state-of-the-art survey. Robotics, 2021, 10 (2): 53.
doi: 10.3390/robotics10020053
|
|
Renaud C, Cros J M, Feng Z Q, et al. The Yeoh model applied to the modeling of large deformation contact/impact problems. International Journal of Impact Engineering, 2009, 36 (5): 659- 666.
doi: 10.1016/j.ijimpeng.2008.09.008
|
|
Schreiber M, Kutzbach H D. Influence of soil and tire parameters on traction. Research in Agricultural Engineering, 2008, 54 (2): 43- 49.
doi: 10.17221/3105-RAE
|
|
Shin Y J, Jeong J S, Jun C W, et al. Interacting analysis between wheel and sand particles based on DEM and its validation with experiments. Journal of Mechanical Science and Technology, 2020, 34 (11): 4537- 4544.
doi: 10.1007/s12206-020-1013-7
|
|
Swamy V S, Pandit R, Yerro A, et al. Review of modeling and validation techniques for tire-deformable soil interactions. Journal of Terramechanics, 2023, 109, 73- 92.
doi: 10.1016/j.jterra.2023.05.007
|
|
Xiao W S, Zhang Y. Design of manned lunar rover wheels and improvement in soil mechanics formulas for elastic wheels in consideration of deformation. Journal of Terramechanics, 2016, 65, 61- 71.
doi: 10.1016/j.jterra.2016.03.004
|
|
Zeng H Y, Zhao C L, Chen S H, et al. Numerical simulations of tire-soil interactions: a comprehensive review. Archives of Computational Methods in Engineering, 2023, 30 (8): 4801- 4829.
doi: 10.1007/s11831-023-09961-6
|
|
Zhu Y, Kan J M, Li W B, et al. A novel forestry chassis with an articulated body with 3 degrees of freedom and installed luffing wheel-legs. Advances in Mechanical Engineering, 2018a, 10 (1): 1- 10.
|
|
Zhu Y, Kan J M, Li W B, et al. Strategies of traversing obstacles and the simulation for a forestry chassis. International Journal of Advanced Robotic Systems, 2018b, 15 (3): 1- 13.
|
|
Zhu Y, Kan J M, Liu F L. A research of design, lateral stability and simulation for a chassis running in forest. Croatian Journal of Forest Engineering, 2022a, 43 (2): 271- 286.
doi: 10.5552/crojfe.2022.1683
|
|
Zhu Y, Kan J M. Prediction of the lateral stability of a forestry chassis with an articulated body and fitted with luffing wheel-legs. Biosystems Engineering, 2022b, 224, 143- 160.
doi: 10.1016/j.biosystemseng.2022.10.007
|