欢迎访问林业科学,今天是

林业科学 ›› 2025, Vol. 61 ›› Issue (2): 180-189.doi: 10.11707/j.1001-7488.LYKX20240155

• 研究论文 • 上一篇    下一篇

林用小型轮式移动平台轮胎尺寸参数对其行驶性能的影响

姚黎阳1,朱阅1,*(),王亚宁1,庞帅2   

  1. 1. 福建农林大学交通与土木工程学院 福州 350002
    2. 山东航空学院电气工程学院 滨州 256600
  • 收稿日期:2024-03-20 出版日期:2025-02-25 发布日期:2025-03-03
  • 通讯作者: 朱阅 E-mail:zhuyue@fafu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52102422);福建省自然科学基金项目(2021J05025)。

Impact of Tire Size on the Driving Performance of Small Wheeled Mobile Platforms in Forest

Liyang Yao1,Yue Zhu1,*(),Yaning Wang1,Shuai Pang2   

  1. 1. College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University Fuzhou 350002
    2. College of Electrical Engineering, Shandong University of Aeronautics Binzhou 256600
  • Received:2024-03-20 Online:2025-02-25 Published:2025-03-03
  • Contact: Yue Zhu E-mail:zhuyue@fafu.edu.cn

摘要:

目的: 提出南方林区不饱和红壤环境轮-壤耦合作用数值模型,基于该模型分析林用小型轮式移动平台轮胎尺寸参数对其行驶性能的影响,为具有高通过性能的林用小型轮式移动平台轮胎尺寸参数设计提供理论依据。方法: 以林用小型轮式移动平台车轮常用的橡胶轮胎为研究对象,通过单轴拉伸试验获得橡胶轮胎物理参数,使用有限元软件Abaqus准确建立轮胎模型;采集南方林区不饱和红壤,通过测量和三轴压缩试验获得不饱和红壤物理参数和力学特性,使用离散元软件PFC3D精确建立南方林区不饱和红壤模型。结合有限元和离散元法,创新性地提出南方林区不饱和红壤环境轮-壤耦合作用数值模型,解决单独采用有限元或离散元法分析轮胎与土壤交互作用存在的局限性问题。基于南方林区不饱和红壤环境轮-壤耦合作用数值模型,仿真分析轮胎直径(D = 65、75、85 mm)、宽度(W = 20、25、34 mm)和轮胎径宽比(D/W = 2.2、2.6、3.0、3.4、3.8)对林用小型轮式移动平台挂钩牵引力和轮胎下陷量的影响。建立与仿真分析一致的轮-壤交互土槽试验,进一步验证南方林区不饱和红壤环境轮-壤耦合作用数值模型的有效性和轮胎尺寸参数对林用小型轮式移动平台行驶性能影响分析的准确性。结果: 1) 挂钩牵引力随轮胎直径和宽度增加表现增大趋势;2) 轮胎下陷量随轮胎直径和宽度增加表现减小趋势,但达到一定范围后,轮胎直径和宽度对下陷量影响变小;3) 轮胎直径和宽度综合指标径宽比(D/W)对林用小型轮式移动平台挂钩牵引力和轮胎下陷量影响显著,其中相较仿真和试验数据而言,D/W = 2.2时产生的挂钩牵引力最大、轮胎下陷量最小,行驶性能表现最优。结论: 本研究准确建立南方林区不饱和红壤环境轮-壤耦合作用数值模型,可用于分析轮胎尺寸参数对林用小型轮式移动平台行驶性能的影响,同时也可为林用小型轮式移动平台的设计、优化和通过性能研究提供科学依据。

关键词: 林用小型轮式移动平台, 轮胎, 有限元和离散元法, 轮-壤交互作用, 数值模拟, 土槽试验, 行驶性能

Abstract:

Objective: A numerical model of tire-soil interaction for the typical unsaturated red soil environment of southern forests in China is proposed. Based on the model, the impact of tire size parameters on the driving performance of small wheeled mobile platforms in forest is analyzed. This research provides a theoretical basis for optimizing tire size parameters for small wheeled mobile platforms to enhance the maneuverability. Method: The commonly used rubber tires of small wheeled mobile platform are investigated in this paper. Physical parameters of the rubber tires are determined through uniaxial tensile test. An accurate tire model is constructed using the finite element software Abaqus. In addition, unsaturated red soil samples from southern forests are collected. Physical and mechanical properties are identified through measurements and triaxial compression tests. A precise model of the unsaturated red soil is established using the discrete element software PFC3D. As a result, a novel numerical model of tire-soil interaction for the typical unsaturated red soil environment of southern forests in China is established by integrating the finite element method and the discrete element method. The approach overcomes the limitations of using either the finite element method or the discrete element method individually. Significantly, the numerical model is used to simulate the impact of tire diameter (D = 65, 75, 85 mm), width (W = 20, 25, 34 mm), and diameter-to-width ratio (D/W = 2.2, 2.6, 3.0, 3.4, 3.8) on the drawbar pull and tire sinkage. Furthermore, soil-bin tests, consistent with the simulation analysis, are established to validate the effectiveness of the numerical model and the accuracy of the analysis regarding the impact of tire size parameters on the driving performance of small wheeled mobile platforms. Result: 1) The drawbar pull shows an increasing trend with the increase in tire diameter and width. 2) The tire sinkage shows a decreasing trend with the increase in tire diameter and width, but beyond a certain range, the influence of tire diameter and width on sinkage diminishes. 3) The comprehensive indicator of tire diameter and width, the diameter-to-width ratio (D/W), has a significant impact on the drawbar pull and sinkage. Among the simulation and experimental data, a D/W ratio of 2.2 provides the maximum drawbar pull and the minimum sinkage, demonstrating the optimal driving performance. Conclusion: The research accurately establishes a numerical model of tire-soil interaction for the typical unsaturated red soil environment southern forests in China. The model can be used to analyze the impact of tire size parameters on the driving performance of small wheeled mobile platforms. Additionally, the research provides a scientific basis for the design, optimization, and mobility studies of small wheeled mobile platforms in forest.

Key words: small wheeled mobile platforms in forest, tire, finite-discrete element method, tire-soil interaction, numerical simulation, soil-bin test, driving performance

中图分类号: