林业科学 ›› 2025, Vol. 61 ›› Issue (1): 81-94.doi: 10.11707/j.1001-7488.LYKX20240009
收稿日期:
2024-01-05
出版日期:
2025-01-25
发布日期:
2025-02-09
通讯作者:
李清河
E-mail:tanfengsen@126.com;tsinghel@caf.ac.cn
基金资助:
Received:
2024-01-05
Online:
2025-01-25
Published:
2025-02-09
Contact:
Qinghe Li
E-mail:tanfengsen@126.com;tsinghel@caf.ac.cn
摘要:
目的: 探究荒漠灌木的木质部解剖结构特征、功能权衡关系以及系统发育和气象因子对解剖结构特征的影响,揭示荒漠灌木的水分适应策略,为退化荒漠生态系统的植被保护和恢复提供理论依据。方法: 以内蒙西部18种典型的荒漠灌木为研究对象,测定木质部各组织占比以及其他与水力相关的性状,结合来自全球的木本植物木质部解剖结构数据,分析荒漠灌木木质部典型特征;利用结构方程模型检验木质部机械安全-储存能力-水力效率间的权衡关系,结合系统发育和物种自然分布区的气候因子探讨种间变异性。结果: 1) 与来自全球的木本植物平均值相比,荒漠灌木的导管组织和轴向薄壁组织占比较高、纤维组织占比较低;与来自全球的被子植物平均值相比,荒漠灌木的导管密度大、导管水力直径小,导管密度增加的比率和导管水力直径减小的比率使其最大理论导水率基本与全球平均值持平。2) 18种荒漠灌木木质部解剖特征的种间差异较大,同科植物的解剖性状在主成分分析中呈现一定聚集性,除导管密度的系统发育信号显著外,其他性状的系统发育信号均不显著。3) 荒漠灌木木质部的机械安全与水力效率、机械安全与储存能力之间均具有显著权衡关系,水力效率和储存能力之间无显著权衡关系。物种自然分布区的年平均气温、最湿季度平均温度、最暖季度平均温度与导管密度负相关,与导管水力直径和导管壁厚度正相关。物种自然分布区的降水量季节性变化与导管壁厚度极显著正相关;年降水量、最湿季度降水量、最暖季度降水量与解剖解剖无显著相关性。结论: 荒漠灌木木质部总体上表现出降低机械支撑、提高储存能力、保障适当的水力效率的木质部干旱适应特征。系统发育和气象因子对导管特征有显著影响,对其他解剖特征的影响较小。
中图分类号:
谭凤森,李清河. 荒漠灌木的木质部解剖结构与功能权衡——以内蒙西部18种灌木为例[J]. 林业科学, 2025, 61(1): 81-94.
Fengsen Tan,Qinghe Li. Anatomical Structure and Functional Trade-Offs of the Xylem in Desert Shrubs in China: a Case Study with 18 Shrubs in Western Inner Mongolia[J]. Scientia Silvae Sinicae, 2025, 61(1): 81-94.
表1
18种荒漠灌木物种的基本信息①"
物种 Species | 科 Family | 物种代码 Code | 叶片习性 Leaf habit | 高度 Height/m | 花果期 Flowering and fruiting period(month) |
白刺Nitraria tangutorum | 蒺藜科Zygophyllaceae | Nt | 落叶Deciduous | 1~2 | 5—8 |
四合木Tetraena mongolica | 蒺藜科Zygophyllaceae | Tm | 落叶Deciduous | 0.4~0.9 | 5—9 |
霸王Zygophyllum xanthoxylum | 蒺藜科Zygophyllaceae | Zx | 落叶Deciduous | 0.5~1 | 4—8 |
黄花红砂Reaumuria trigyna | 柽柳科Tamaricaceae | Rt | 落叶Deciduous | 0.1~0.3 | 7—9 |
蒙古扁桃Prunus mongolica | 蔷薇科Rosaceae | Prm | 落叶Deciduous | 1~2 | 5—10 |
绵刺Potaninia mongolica | 蔷薇科Rosaceae | Pom | 落叶Deciduous | 0.3~0.4 | 6—10 |
锐枝木蓼Atraphaxis pungens | 廖科Polygonaceae | Ap | 落叶Deciduous | 0.8~1.5 | 5—8 |
沙冬青Ammopiptanthus mongolicus | 豆科Fabaceae | Am | 常绿Evergreen | 1.5~2 | 4—6 |
柠条锦鸡儿Caragana korshinskii | 豆科Fabaceae | Ck | 落叶Deciduous | 1~4 | 5—7 |
毛刺锦鸡儿Caragana tibetica | 豆科Fabaceae | Ct | 落叶Deciduous | 0.2~0.3 | 5—8 |
小叶锦鸡儿Caragana microphylla | 豆科Fabaceae | Cm | 落叶Deciduous | 1~3 | 5—8 |
狭叶锦鸡儿Caragana stenophylla | 豆科Fabaceae | Cs | 落叶Deciduous | 0.3~0.8 | 4—8 |
荒漠锦鸡儿Caragana roborovskyi | 豆科Fabaceae | Cr | 落叶Deciduous | 0.3~1 | 5—7 |
半日花Helianthemum songaricum | 半日花科Cistaceae | Hs | 落叶Deciduous | 0.10~0.12 | 5—9 |
驼绒藜Krascheninnikovia ceratoides | 藜科Chenopodiaceae | Kc | 落叶Deciduous | 0.1~1 | 6—9 |
黑沙蒿Artemisia ordosica | 菊科Asteraceae | Ao | 落叶Deciduous | 0.5~1 | 7—10 |
紫菀木Asterothamnus alyssoides | 菊科Asteraceae | Aal | 落叶Deciduous | 0.1~0.2 | 7—10 |
蓍状亚菊Ajania achilleoides | 菊科Asteraceae | Aac | 落叶Deciduous | 0.1~0.2 | 8—10 |
图1
木本植物木质部的解剖特征 全球木本植物木质部各组织占比数据收集自TRY Plant Trait Database数据库(https://www.try-db.org/TryWeb/Home.php)(Kattge et al.,2020),n=781;北热带喀斯特数据来自张启伟(2021),n=17;亚热带喀斯特数据来自倪鸣源等(2021),n=21;红树林数据来自李艺蝉(2021),n=12。导管直径和密度数据收集自TRY Plant Trait Database数据库和已发表文献(正在筹建的数据库 https://xylemfunctionaltraits.org/)。图B中绿色圆圈代表被子植物,蓝色圆圈代表裸子植物,红色圆圈代表本研究中的物种。Xylem tissue partitioning for 781 global woody species were collected from the TRY Plant Trait Database (https://www.try-db.org/TryWeb/Home.php) (Kattge et al.,2020). Tropical karst woody species data were collected from Zhang (2021),n=17. Subtropical karst woody species data were collected from Ni et al. (2021),n=21. Mangrove species data were collected from Li (2021),n=12. Data of vessel density and hydraulically vessel diameter were collected from the TRY Plant Trait Database and published literature (database under construction. https://xylemfunctionaltraits.org/).Green circles represent angiosperms, blue circles represent gymnosperms, and red circles represent species in this study B. Vf:导管组织占比 Vessel fraction;APf:轴向薄壁组织占比 Axial parenchyma fraction;RPf :射线薄壁组织占比 Ray parenchyma fraction;Ff:纤维组织占比 Fiber fraction;Tf:管胞组织占比 Tracheid fraction."
图3
木质部功能性状偏最小二乘路径模型分析(PLS-PM) MS:机械安全 Mechanical safety;HE:水力效率 Hydraulic efficiency;SC:储存能力 Storage capacity;WD:边材密度 Sapwood density;Ff:纤维组织占比 Fiber fraction;VWT:相邻两导管壁厚度 Double-wall thickness of adjacent vessels;VLf:导管腔占比 Vessel lumen fraction;VD:导管密度 Vessel density;Dh:导管水力直径 Hydraulically vessel diameter;TPf:总薄壁组织占比 Total parenchyma fraction;APf:轴向薄壁组织占比 Axial parenchyma fraction;RPf:射线薄壁组织占比 Ray parenchyma fractio.圆圈内代表潜变量,方框内代表显变量。潜变量之间的实线箭头表示具有显著负相关性,虚线箭头表示相关性不显著,线上标注了标准化路径系数及其显著程度(***,P<0.001; ns,P>0.05)。括号里的数字表示指标对潜变量的载荷。GOF表示整个模型的拟合优度。Circles represent latent variables and boxes represent manifest variables. Solid lines indicate negative significant relationships and dotted lines indicate insignificant relationships between two variables. The standardized path coefficient and its significance are marked online (***, P<0.001; ns, P>0.05). Each number in parentheses indicates the loading value of the indicator to the latent variable. GOF indicates the goodness of fit of the entire model."
图3
木各组织占比之间的权衡关系 线上标注了Pearson相关性系数和相关性显著程度 (*,P<0.05; **P<0.01)。The Pearson correlation coefficient and the significance of the correlation (*, P<0.05; **, P<0.01) are marked online. Ff:纤维组织占比 Fiber fraction;VLf:导管腔占比 Vessel lumen fraction;TPf:总薄壁组织占比 Total parenchyma fraction;APf:轴向薄壁组织占比 Axial parenchyma fraction;RPf:射线薄壁组织占比 Ray parenchyma fraction."
图4
木质部解剖特征的主成分分析 A:功能性状在第1主成分轴、第2主成分轴的位置;B:物种在第1主成分轴、第2主成分轴的位置。A:Traits loaded on the first and second axes;B:Species loaded on the first and second axes.Nt:白刺 Nitraria tangutorum;TM:四合木 Tetraena mongolica;Zx:霸王 Zygophyllum xanthoxylum;Rt:黄花红砂 Reaumuria trigyna;Prm:蒙古扁桃 Prunus mongolica;Pom:绵刺 Potaninia mongolica;Ap:锐枝木蓼 Atraphaxis pungens;Am:沙冬青 Ammopiptanthus mongolicus;Ck:柠条锦鸡儿 Caragana korshinskii;Ct:毛刺锦鸡儿 Caragana tibetica;Cm:小叶锦鸡儿 Caragana microphylla;Cs:狭叶锦鸡儿 Caragana stenophylla;Cr:荒漠锦鸡儿 Caragana roborovskyi;Hs:半日花 Helianthemum songaricum;Kc:驼绒藜 Krascheninnikovia ceratoides;Ao:黑沙蒿 Artemisia ordosica;Aal:紫菀木 Asterothamnus alyssoides;Aac:蓍状亚菊 Ajania achilleoides。RPf:射线薄壁组织占比 Ray parenchyma fraction;APf:轴向薄壁组织占比 Axial parenchyma fraction;TPf:总薄壁组织占比 Total parenchyma fraction;Ff:纤维组织占比 Fiber fraction;VLf:导管腔占比 Vessel lumen fraction;VWT:相邻两导管壁厚度 Double-wall thickness of adjacent vessels;T/D:导管壁加固系数 Vessel wall reinforcement coefficient:VD:导管密度 Vessel density;Dh:导管水力直径 Hydraulically vessel diameter;Kth:理论导水率 Theoretical hydraulic conductivity;WD:边材密度 Sapwood density."
表1
18种荒漠灌木的木质部性状 (平均值±标准差)①"
物种 Species | RPf (%) | APf (%) | TPf (%) | Ff (%) | VLf (%) | VWf (%) | VWT (%) | Tf (%) | T/D | VD/(N·mm?2) | Dh/μm | Kth/(kg·s?1 MPa?1m?1) | WD/(g·cm?3) |
白刺Nitraria tangutorum | 5.95±1.45 | 5.22±1.15 | 11.18±1.45 | 70.69±2.36 | 14.12±5.95 | 3.76±1.85 | 5.37±0.23 | — | 0.21±0.14 | 290±121.39 | 30.52±4.65 | 8.17±1.18 | 0.93+0.07 |
四合木Tetraena mongolica | 7.27±2.51 | 4.84±1.5 | 12.11±3.53 | 77.98±5.86 | 6.6±1.87 | 3.31±0.81 | 6.6±0.15 | — | 0.29±0.03 | 162.5±30.95 | 25.32±5.05 | 2.03±1.10 | 0.93+0.05 |
霸王Zygophyllum xanthoxylum | 16.38±3.51 | 6.76±4.35 | 23.13±6.13 | 58.09±8.98 | 14±5.28 | 4.78±1.95 | 5.4±0.24 | — | 0.21±0.03 | 275.53±126.93 | 31.03±4.13 | 7.24±4.35 | 0.88+0.04 |
黄花红砂Reaumuria trigyna | 2.5±2.37 | 24.04±7.58 | 26.55±7.46 | 50.74±7.00 | 14.23±1.77 | 8.48±1.17 | 5.32±0.15 | — | 0.23±0.03 | 575.69±338.64 | 23.31±5.29 | 4.23±1.90 | 0.61+0.03 |
蒙古扁桃Prunus mongolica | 19.19±6.09 | 2.96±0.77 | 22.15±5.72 | 45.74±3.76 | 23.73±6.27 | 8.37±1.93 | 6.44±0.12 | — | 0.41±0.01 | 19.91±2.06 | 5.54±2.38 | 0.81+0.05 | |
绵刺Potaninia mongolica | 15.16±2.59 | 3.75±2.48 | 18.92±2.27 | 58.9±7.66 | 16.27±2.82 | 5.91±1.00 | 3.16±0.21 | — | 0.22±0.01 | 969.3±144.11 | 16±1.37 | 1.78±0.57 | 0.68+0.02 |
锐枝木蓼Atraphaxis pungens | 2.99±2 | 5.98±1.17 | 8.97±2.11 | 73.3±4.93 | 12.71±2.92 | 5.01±1.16 | 4.07±0.11 | — | 0.29±0.03 | 901.11±393.35 | 17.92±3.88 | 3.44±2.59 | 0.83+0.1 |
沙冬青Ammopiptanthus mongolicus | 29.14±4.35 | 1.85±1.29 | 31±5.50 | 24.23±11.39 | 10.98±1.75 | 4.72±0.77 | 3.93±0.16 | 29.07±3.35 | 0.35±0.03 | 768.99±190.85 | 16.1±2.26 | 1.42±0.54 | 0.8+0.03 |
柠条锦鸡儿Caragana korshinskii | 5.39±2.42 | 24.21±5.78 | 29.59±13.94 | 44.7±14.39 | 19±5.14 | 6.7±1.53 | 5.71±0.22 | — | 0.23±0.01 | 405.21±89.46 | 29.53±4.16 | 8.89±4.43 | 0.62+0.02 |
毛刺锦鸡儿Caragana tibetica | 10.9±3.55 | 9.97±1.3 | 20.87±7.23 | 41.48±7.76 | 24.55±5.81 | 13.1±4.55 | 4.56±0.16 | — | 0.3±0.04 | 18.53±3.67 | 4.7±2.58 | 0.57+0.03 | |
小叶锦鸡儿Caragana microphylla | 9.15±4.29 | 16.31±2.39 | 25.46±3.89 | 56.79±6.31 | 10.81±3.05 | 6.94±1.55 | 5.29±0.40 | — | 0.34±0.06 | 840.03±469.46 | 17.77±2.46 | 2.16±1.08 | 0.56+0.03 |
狭叶锦鸡儿Caragana stenophylla | 8.5±2.26 | 15.69±1.77 | 24.19±2.33 | 42.81±5.82 | 19.18±3.53 | 13.83±4.09 | 4.43±0.16 | — | 0.4±0.08 | 15.02±2.36 | 2.91±1.34 | 0.79+0.04 | |
荒漠锦鸡儿Caragana roborovskyi | 7.22±2.88 | 14.76±1.63 | 21.98±2.16 | 45.97±6.99 | 20.58±5.25 | 11.47±2.26 | 4.53±0.17 | — | 0.28±0.04 | 988.99±304.37 | 18.74±1.22 | 3.46±1.16 | 0.66+0.03 |
半日花Helianthemum songaricum | 22.57±3.71 | 7.11±2.53 | 29.68±2.75 | 50.78±6.22 | 11.97±3.34 | 7.57±2.33 | 3.7±0.20 | — | 0.33±0.02 | 11.94±0.76 | 0.67±0.16 | 0.75+0.05 | |
驼绒藜Krascheninnikovia ceratoides | — | 15.27±0.85 | 15.27±0.85 | 63.27±8.31 | 13.96±6.12 | 7.5±2.68 | 4.73±0.13 | — | 0.36±0.12 | 16.4±5.62 | 2.6±1.57 | 0.98+0.09 | |
黑沙蒿Artemisia ordosica | 4.31±2.84 | 11.92±1.11 | 16.23±6.32 | 58.91±2.69 | 16.51±1.43 | 8.35±1.18 | 4.24±0.17 | — | 0.22±0.03 | 614.73±136.08 | 21.29±2.14 | 3.31±0.80 | 0.8+0.03 |
紫菀木Asterothamnus alyssoides | 6.68±2.87 | 9.06±5.19 | 15.74±5.31 | 62.04±4.81 | 15.09±1.89 | 7.13±2.25 | 4.7±0.16 | — | 0.34±0.05 | 16.65±2.56 | 2.19±0.65 | 0.77+0.05 | |
耆状亚菊Ajania achilleoides | — | 21.72±3.56 | 21.72±8.28 | 60.79±4.49 | 11.76±3.61 | 5.74±1.54 | 4.42±0.11 | — | 0.31±0.03 | 795.54±356.4 | 16.23±1.94 | 1.37±0.36 | 0.93+0.03 |
种间变异系数Interspecific variation coefficient(%) | 81.26 | 63.65 | 31.63 | 24.08 | 30.57 | 40.31 | 19.07 | — | 22.1 | 56.95 | 28.21 | 64.48 | 16.46 |
图2
18种荒漠灌木的木质部解剖结构 A:白刺 Nitraria tangutorum;B:四合木 Tetraena mongolica;C:霸王 Zygophyllum xanthoxylum;D:黄花红砂 Reaumuria trigyna;E:蒙古扁桃 Prunus mongolica;F:绵刺 Potaninia mongolica;G:锐枝木蓼 Atraphaxis pungens;H:沙冬青 Ammopiptanthus mongolicus;I:柠条锦鸡儿 Caragana korshinskii;J:毛刺锦鸡儿 Caragana tibetica;K:小叶锦鸡儿 Caragana microphylla;L:狭叶锦鸡儿 Caragana stenophylla;M:荒漠锦鸡儿 Caragana roborovskyi;N:半日花 Helianthemum songaricum;O:驼绒藜 Krascheninnikovia ceratoides;P:黑沙蒿 Artemisia ordosica;Q:紫菀木 Asterothamnus alyssoides;R:蓍状亚菊 Ajania achilleoides."
白雨鑫, 刘玉龙, 王晓春, 等. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异. 植物生态学报, 2023, 47 (8): 1144- 1158.
doi: 10.17521/cjpe.2022.0300 |
|
Bai Y X, Liu Y L, Wang X C, et al. Comparison of characteristics of tree trunk xylem vessels among three species of Betula in northeast China and their relationships with climate. Chinese Journal of Plant Ecology, 2023, 47 (8): 1144- 1158.
doi: 10.17521/cjpe.2022.0300 |
|
曹宛虹, 张新英. 锦鸡儿属6种沙生植物次生木质部解剖. 植物学报, 1991, 33 (3): 181- 187,253−254. | |
Cao W H, Zhang X Y. The secondary xylem anatomy of 6 desert plants of Caragana. Journal of Integrative Plant Biology, 1991, 33 (3): 181- 187,253−254. | |
陈 婕, 徐 庆, 高德强, 等. 西鄂尔多斯半日花及霸王的水分利用. 林业科学, 2016, 52 (2): 47- 56. | |
Chen J, Xu Q, Gao D Q, et al. Water use of helianthemum songaricum and co-occurring plant species Sarcozygium xanthoxylum in western Ordos. Scientia Silvae Sinicae, 2016, 52 (2): 47- 56. | |
龚 容, 徐 霞, 江红蕾, 等. 干旱半干旱区几种典型灌木半灌木茎叶水分传导系统的结构特征. 北京师范大学学报(自然科学版), 2018, 54 (4): 534- 542. | |
Gong R, Xu X, Jiang H L, et al. Architectural traits of stem-leaf hydraulic system in typical shrubs in arid and semi-arid regions. Journal of Beijing Normal University (Natural Science), 2018, 54 (4): 534- 542. | |
胡 云, 燕 玲, 李 红. 14种荒漠植物茎的解剖结构特征分析. 干旱区资源与环境, 2006, 20 (1): 202- 208. | |
Hu Y, Yan L, Li H. Studies on the anatomical characteristics of the stems of 14 desert plants. Journal of Arid Land Resources and Environment, 2006, 20 (1): 202- 208. | |
金芳玉. 2014. 绵刺的营养器官解剖结构与抗旱适应性的关系. 呼和浩特: 内蒙古农业大学. | |
Jin F Y. 2014. Relationship between the Potaninia monglica anatomical structure of the vegetative organ and its draught adapability. Hohhot: Inner Mongolia Agricultural University. [in Chinese] | |
李艺蝉. 2021. 红树植物木质部结构特征及其对环境因子的响应. 南宁: 广西大学. | |
Li Y C. 2021. Xylem anatomical structure and respencese to environment of mangrove. Nanning: Guangxi University. [in Chinese] | |
马成仓, 高玉葆, 李清芳等. 内蒙古高原荒漠区几种锦鸡儿属(Caragana)优势植物的生理生态适应特性. 生态学报, 2007, 27 (11): 4643- 4650.
doi: 10.3321/j.issn:1000-0933.2007.11.032 |
|
Ma C H, Gao Y B, Li Q F, et al. A comparison of ecophysiological characteristic of four dominabt Caragana species in adaptatin to desert habitat of the Inner Mongolia Plateau. Acta Ecologica Sinica, 2007, 27 (11): 4643- 4650.
doi: 10.3321/j.issn:1000-0933.2007.11.032 |
|
倪鸣源, Aina A A N, 王永强, 等. 中亚热带喀斯特常绿落叶阔叶混交林典型树种的木质部解剖与功能特征分析. 植物生态学报, 2021, 45 (4): 394- 403.
doi: 10.17521/cjpe.2020.0367 |
|
Ni M Y, Aina A A N, Wang Y Q. et al. Analysis of xylem anatomy and function of representative tree species in a mixed evergreen and deciduous broad-leaved forest of mid-subtropical Karst region. Chinese Journal of Plant Ecology, 2021, 45 (4): 394- 403.
doi: 10.17521/cjpe.2020.0367 |
|
王 琼. 2009. 东阿拉善、西鄂尔多斯地区主要荒漠植物水分生态适应性研究. 呼和浩特: 内蒙古大学. | |
Wang Q. 2009. Study on water ecological adaptability of dominabt desert plants on the eastern Alashan western Erdos area. Hohhot: Inner Mongolia University.[in Chinese] | |
张启伟. 2021. 北热带喀斯特山地不同坡位木本植物的水力结构与功能. 南宁: 广西大学. | |
Zhang Q W. 2021. Hydraulic structure and function in woody plants across different slope positions from a tropical Karst forest. Nanning: Guangxi University. [in Chinese] | |
Adams H D, Zeppel M J B, Anderegg W R L, et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology & Evolution, 2017, 1, 1285- 1291. | |
Anderegg W R L, Klein T, Bartlett M, et al. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (18): 5024- 5029. | |
Arend M, Fromm J. Seasonal change in the drought response of wood cell development in poplar. Tree Physiology, 2007, 27 (7): 985- 992.
doi: 10.1093/treephys/27.7.985 |
|
Aritsara A N A, Ni M Y, Wang Y Q, et al. Tree growth is correlated with hydraulic efficiency and safety across 22 tree species in a subtropical Karst forest. Tree Physiology, 2023, 43 (8): 1307- 1318.
doi: 10.1093/treephys/tpad050 |
|
Aritsara A N A, Razakandraibe V M, Ramananantoandro T, et al. Increasing axial parenchyma fraction in the Malagasy Magnoliids facilitated the co-optimisation of hydraulic efficiency and safety. New Phytologist, 2021, 229 (3): 1467- 1480.
doi: 10.1111/nph.16969 |
|
Bai Y X, Zhang Y Q, Michalet R, et al. Responses of different herb life-history groups to a dominant shrub species along a dune stabilization gradient. Basic and Applied Ecology, 2019, 38, 1- 12.
doi: 10.1016/j.baae.2019.06.001 |
|
Barbaroux C, Bréda N. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiology, 2002, 22 (17): 1201- 1210.
doi: 10.1093/treephys/22.17.1201 |
|
Begum S, Kudo K, Rahman M H, et al. Climate change and the regulation of wood formation in trees by temperature. Trees, 2018, 32 (1): 3- 15.
doi: 10.1007/s00468-017-1587-6 |
|
Bryukhanova M, Fonti P. Xylem plasticity allows rapid hydraulic adjustment to annual climatic variability. Trees, 2013, 27 (3): 485- 496.
doi: 10.1007/s00468-012-0802-8 |
|
Bucci S J, Scholz F G, Peschiutta M L, et al. 2013. The stem xylem of Patagonian shrubs operates far from the point of catastrophic dysfunction and is additionally protected from drought-induced embolism by leaves and roots. Plant, Cell & Environment, 36(12): 2163−2174. | |
Carlquist S. 2001. Comparative wood anatomy. Berlin: HeidelbergSpringer Berlin Heidelberg. | |
Castro-Díez P, Puyravaud J P, Cornelissen J H C, et al. Stem anatomy and relative growth rate in seedlings of a wide range of woody plant species and types. Oecologia, 1998, 116 (1): 57- 66. | |
Chave J, Coomes D, Jansen S, et al. Towards a worldwide wood economics spectrum. Ecology Letters, 2009, 12 (4): 351- 366.
doi: 10.1111/j.1461-0248.2009.01285.x |
|
Creese C, Benscoter A M, Maherali H. Xylem function and climate adaptation in Pinus. American Journal of Botany, 2011, 98 (9): 1437- 1445.
doi: 10.3732/ajb.1100123 |
|
Ekwealor K U, Echereme C B, Ofobeze T N, et al. 2020. Adaptive strategies of desert plants in coping with the harsh conditions of desert environments: a review. International Journal of Plant & Soil Science, 1−8. | |
Ewers F W, Ewers J M, Jacobsen A L, et al. Vessel redundancy: modeling safety in numbers. IAWA Journal, 2007, 28 (4): 373- 388.
doi: 10.1163/22941932-90001650 |
|
Ehleringer J R, Mooney H A. Leaf hairs: Effects on physiological activity and adaptive value to a desert shrub. Oecologia, 1978, 37 (2): 183- 200.
doi: 10.1007/BF00344990 |
|
Feng X Y, Zhong L F, Zhou H, et al. The limiting effect of genome size on xylem vessel diameter is shifted by environmental pressures in seed plants. Plant Direct, 2022, 6 (12): e471.
doi: 10.1002/pld3.471 |
|
Fontes C G, Pinto-Ledezma J, Jacobsen A L, et al. Adaptive variation among oaks in wood anatomical properties is shaped by climate of origin and shows limited plasticity across environments. Functional Ecology, 2022, 36 (2): 326- 340.
doi: 10.1111/1365-2435.13964 |
|
Fonti P, von Arx G, García-González I, et al. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytologist, 2010, 185 (1): 42- 53.
doi: 10.1111/j.1469-8137.2009.03030.x |
|
Fortunel C, Ruelle J, Beauchêne J, et al. Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients. New Phytologist, 2014, 202 (1): 79- 94.
doi: 10.1111/nph.12632 |
|
Ganthaler A, Mayr S. Dwarf shrub hydraulics: two Vaccinium species (Vaccinium myrtillus, Vaccinium vitis-idaea) of the European Alps compared. Physiologia Plantarum, 2015, 155 (4): 424- 434.
doi: 10.1111/ppl.12333 |
|
Gebauer R L E, Schwinning S, Ehleringer J R. Interspecific competition and resource pulse utilization in a cold desert community. Ecology, 2002, 83 (9): 2602.
doi: 10.1890/0012-9658(2002)083[2602:ICARPU]2.0.CO;2 |
|
Gibbens R P, Lenz J M. Root systems of some Chihuahuan Desert plants. Journal of Arid Environments, 2001, 49 (2): 221- 263.
doi: 10.1006/jare.2000.0784 |
|
Gómez-Aparicio L. The role of plant interactions in the restoration of degraded ecosystems: a meta-analysis across life-forms and ecosystems. Journal of Ecology, 2009, 97 (6): 1202- 1214.
doi: 10.1111/j.1365-2745.2009.01573.x |
|
Gui Z Y, Li L C, Qin S G, et al. Foliar water uptake of four shrub species in a semi-arid desert. Journal of Arid Environments, 2021, 195, 104629.
doi: 10.1016/j.jaridenv.2021.104629 |
|
Hacke U G, Sperry J S, Pockman W T, et al. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 2001, 126 (4): 457- 461.
doi: 10.1007/s004420100628 |
|
Hacke U G, Sperry J S, Wheeler J K, et al. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 2006, 26 (6): 689- 701.
doi: 10.1093/treephys/26.6.689 |
|
Hartill G E, Blackman C J, Halliwell B, et al. Cold temperature and aridity shape the evolution of drought tolerance traits in Tasmanian species of Eucalyptus. Tree Physiology, 2023, 43 (9): 1493- 1500.
doi: 10.1093/treephys/tpad065 |
|
Janssen T A J, Hölttä T, Fleischer K, et al. 2020. Wood allocation trade-offs between fiber wall, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. Plant, Cell & Environment, 43(4): 965−980. | |
Jin Y, Qian H. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography, 2019, 42 (8): 1353- 1359.
doi: 10.1111/ecog.04434 |
|
Kattge J, Bönisch G, Díaz S S, et al. RY plant trait database - enhanced coverage and open access. Glob Change Biology, 2020, 26 (1): 119- 188.
doi: 10.1111/gcb.14904 |
|
Liu H, Gleason S M, Hao G Y, et al. Hydraulic traits are coordinated with maximum plant height at the global scale. Science Advances, 2019, 5 (2): eaav1332.
doi: 10.1126/sciadv.aav1332 |
|
Liu H, Ye Q, Gleason S M, et al. Weak tradeoff between xylem hydraulic efficiency and safety: climatic seasonality matters. New Phytologist, 2021, 229 (3): 1440- 1452.
doi: 10.1111/nph.16940 |
|
McCormack M L, Kaproth M A, Cavender-Bares J, et al. Climate and phylogenetic history structure morphological and architectural trait variation among fine-root orders. New Phytologist, 2020, 228 (6): 1824- 1834.
doi: 10.1111/nph.16804 |
|
Morris H, Gillingham M A F, Plavcová L, et al. 2018. Vessel diameter is related to amount and spatial arrangement of axial parenchyma in woody angiosperms. Plant, Cell & Environment, 41(1): 245-260. | |
Mrad A, Domec J C, Huang C W, et al. 2018. A network model links wood anatomy to xylem tissue hydraulic behaviour and vulnerability to cavitation. Plant, Cell & Environment, 41(12): 2718-2730. | |
Murakami Y, Miki N H, Yang L, et al. Water transport properties of seven woody species from the semi-arid Mu Us Sandy Land, China. Landscape and Ecological Engineering, 2016, 12 (2): 209- 220.
doi: 10.1007/s11355-015-0290-2 |
|
Nola P, Bracco F, Assini S, et al. Xylem anatomy of Robinia pseudoacacia L. and Quercus robur L. is differently affected by climate in a temperate alluvial forest. Annals of Forest Science, 2020, 77 (1): 8.
doi: 10.1007/s13595-019-0906-z |
|
Noy-Meir I. Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 1973, 4, 25- 51.
doi: 10.1146/annurev.es.04.110173.000325 |
|
Ogasa M, Miki N H, Murakami Y, et al. Recovery performance in xylem hydraulic conductivity is correlated with cavitation resistance for temperate deciduous tree species. Tree Physiology, 2013, 33 (4): 335- 344.
doi: 10.1093/treephys/tpt010 |
|
Pace M R, Angyalossy V. Wood anatomy and evolution: a case study in the Bignoniaceae. International Journal of Plant Sciences, 2013, 174 (7): 1014- 1048.
doi: 10.1086/670258 |
|
Palacio S, Paterson E, Sim A, et al. Browsing affects intra-ring carbon allocation in species with contrasting wood anatomy. Tree Physiology, 2011, 31 (2): 150- 159.
doi: 10.1093/treephys/tpq110 |
|
Paradis E, Claude J, Strimmer K. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics, 2004, 20 (2): 289- 290.
doi: 10.1093/bioinformatics/btg412 |
|
Pérez-de-Lis G, Rossi S, Vázquez-Ruiz R A, et al. Do changes in spring phenology affect earlywood vessels? Perspective from the xylogenesis monitoring of two sympatric ring-porous oaks. New Phytologist, 2016, 209 (2): 521- 530.
doi: 10.1111/nph.13610 |
|
Pittermann J. The evolution of water transport in plants: an integrated approach. Geobiology, 2010, 8 (2): 112- 139.
doi: 10.1111/j.1472-4669.2010.00232.x |
|
Pivovaroff A L, Sack L, Santiago L S. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis. New Phytologist, 2014, 203 (3): 842- 850.
doi: 10.1111/nph.12850 |
|
Pratt R B, Jacobsen A L. Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics. Plant. Cell & Environment, 2017, 40 (6): 897- 913. | |
Puchi P F, Castagneri D, Rossi S, et al. Wood anatomical traits in black spruce reveal latent water constraints on the boreal forest. Global Change Biology, 2020, 26 (3): 1767- 1777.
doi: 10.1111/gcb.14906 |
|
Rana R, Langenfeld-Heyser R, Finkeldey R, et al. Functional anatomy of five endangered tropical timber wood species of the family Dipterocarpaceae. Trees, 2009, 23 (3): 521- 529.
doi: 10.1007/s00468-008-0298-4 |
|
Reich P B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. Journal of Ecology, 2014, 102 (2): 275- 301.
doi: 10.1111/1365-2745.12211 |
|
Scholz F G, Bucci S J, Arias N, et al. Osmotic and elastic adjustments in cold desert shrubs differing in rooting depth: coping with drought and subzero temperatures. Oecologia, 2012, 170 (4): 885- 897.
doi: 10.1007/s00442-012-2368-y |
|
Sperry J. Evolution of water transport and xylem structure. International Journal of Plant Sciences, 2003, 164 (S3): S115- S127. | |
Sperry J S, Hacke U G, Feild T S, et al. Hydraulic consequences of vessel evolution in angiosperms. International Journal of Plant Sciences, 2007, 168 (8): 1127- 1139.
doi: 10.1086/520726 |
|
Stojnić S, Suchocka M, Benito-Garzón M, et al. Variation in xylem vulnerability to embolism in European beech from geographically marginal populations. Tree Physiology, 2018, 38 (2): 173- 185.
doi: 10.1093/treephys/tpx128 |
|
Sun J, Wang N A, Niu Z M. Effect of soil environment on species diversity of desert plant communities. Plants, 2023, 12 (19): 3465.
doi: 10.3390/plants12193465 |
|
Tomasella M, Petrussa E, Petruzzellis F, et al. The possible role of non-structural carbohydrates in the regulation of tree hydraulics. International Journal of Molecular Sciences, 2019, 21 (1): 144.
doi: 10.3390/ijms21010144 |
|
Torres-Ruiz J M, Cochard H, Fonseca E, et al. Differences in functional and xylem anatomical features allow Cistus species to co-occur and cope differently with drought in the Mediterranean region. Tree Physiology, 2017, 37 (6): 755- 766.
doi: 10.1093/treephys/tpx013 |
|
Tumajer J, Treml V. Response of floodplain pedunculate oak (Quercus robur L. ) tree-ring width and vessel anatomy to climatic trends and extreme hydroclimatic events. Forest Ecology and Management, 2016, 379, 185- 194.
doi: 10.1016/j.foreco.2016.08.013 |
|
Tyree M T, Zimmermann M H. 2002. Xylem structure and the ascent of sap. Berlin: Heidelberg Springer. | |
Tyree M T, Ewers F W. The hydraulic architecture of trees and other woody plants. New Phytologist, 1991, 119 (3): 345- 360.
doi: 10.1111/j.1469-8137.1991.tb00035.x |
|
Waseem M, Nie Z F, Yao G Q, et al. Dew absorption by leaf trichomes in Caragana korshinskii: an alternative water acquisition strategy for withstanding drought in arid environments. Physiologia Plantarum, 2021, 172 (2): 528- 539.
doi: 10.1111/ppl.13334 |
|
Weithmann G, Paligi S S, Schuldt B, et al. Branch xylem vascular adjustments in European beech in response to decreasing water availability across a precipitation gradient. Tree Physiology, 2022, 42 (11): 2224- 2238. | |
Weltzin J F, Loik M E, Schwinning S, et al. Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience, 2003, 53 (10): 941- 952.
doi: 10.1641/0006-3568(2003)053[0941:ATROTE]2.0.CO;2 |
|
Wheeler J K, Sperry J S, Hacke U G, et al. 2005. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell & Environment, 28(6): 800-812. | |
Whitford W G. Ecology of desert systems. Journal of Mammalogy, 2002, 84 (3): 1122- 1124. | |
Yang X D, Anwar E, Zhou J, et al. Higher association and integration among functional traits in small tree than shrub in resisting drought stress in an arid desert. Environmental and Experimental Botany, 2022, 201, 104993.
doi: 10.1016/j.envexpbot.2022.104993 |
|
Yu T, Liu P J, Zhang Q, et al. Detecting forest degradation in the three-north forest shelterbelt in China from multi-scale satellite images. Remote Sensing, 2021, 13 (6): 1131.
doi: 10.3390/rs13061131 |
|
Zanne A E, Westoby M, Falster D S, et al. Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany, 2010, 97 (2): 207- 215.
doi: 10.3732/ajb.0900178 |
|
Zanne A E, Tank D C, Cornwell W K, et al. Three keys to the radiation of angiosperms into freezing environments. Nature, 2014, 506, 89- 92.
doi: 10.1038/nature12872 |
|
Zhang G Q, Mao Z, Maillard P, et al. Functional trade-offs are driven by coordinated changes among cell types in the wood of angiosperm trees from different climates. New Phytologist, 2023, 240 (3): 1162- 1176.
doi: 10.1111/nph.19132 |
|
Zhang S B, Cao K F, Fan Z X, et al. Potential hydraulic efficiency in angiosperm trees increases with growth-site temperature but has no trade-off with mechanical strength. Global Ecology and Biogeography, 2013, 22 (8): 971- 981.
doi: 10.1111/geb.12056 |
|
Zheng J M, Martínez-Cabrera H I. Wood anatomical correlates with theoretical conductivity and wood density across China: evolutionary evidence of the functional differentiation of axial and radial parenchyma. Annals of Botany, 2013, 112 (5): 927- 935.
doi: 10.1093/aob/mct153 |
|
Zheng J M, Zhao X, Morris H, et al. Phylogeny best explains latitudinal patterns of xylem tissue fractions for woody angiosperm species across China. Frontiers in Plant Science, 2019, 10, 556.
doi: 10.3389/fpls.2019.00556 |
[1] | 刘彩霞,王慧敏,张美丽,梁玲瑜,蔡泱莲,汪杨,王正,吕全. 钝翅细小蠹对樟子松的危害及其传播松枯梢病的潜在作用[J]. 林业科学, 2025, 61(1): 17-25. |
[2] | 李心钰,钱铖,陶静,宗世祥. 入侵害虫长林小蠹线粒体全基因组的测定与分析[J]. 林业科学, 2024, 60(8): 164-173. |
[3] | 耿显胜,舒金平,刘莹,刘军. 浙江省香椿溃疡病病原菌的分离和鉴定[J]. 林业科学, 2024, 60(5): 151-157. |
[4] | 曾伟生,蒲莹,杨学云,易善军. 我国5种主要人工林乔木层碳储量生长模型及其气候驱动分析[J]. 林业科学, 2023, 59(3): 21-30. |
[5] | 王正,马晓乾,周勤政,郑桂恒,夏吾加,张艳明,王成立,晋鹏非,吕全,张星耀. 中国齿小蠹属昆虫的鉴定[J]. 林业科学, 2021, 57(12): 79-91. |
[6] | 刘潮,唐利洲,韩利红. 四川山胡椒叶绿体基因组特征及山胡椒属系统发育[J]. 林业科学, 2021, 57(12): 167-174. |
[7] | 李宏群,韩培士,牛常会,袁晓青,邢立刚. 气候变化对我国特有濒危动物褐马鸡潜在生境的影响[J]. 林业科学, 2021, 57(10): 102-110. |
[8] | 蒋明,柯世省,王军峰. 多脉铁木叶绿体基因组的序列特征和系统发育[J]. 林业科学, 2020, 56(5): 60-68. |
[9] | 张晓玮,王婧如,王明浩,杨毅,赵长明. 中国云杉属树种地理分布格局的主导气候因子[J]. 林业科学, 2020, 56(4): 1-11. |
[10] | 耿显胜,舒金平,盛建立,张威,彭瀚. 非刚竹属5种竹子丛枝病病原菌的分离和鉴定[J]. 林业科学, 2020, 56(3): 82-89. |
[11] | 赵志江, 郭文霞, 康东伟, 崔莉, 赵联军, 李俊清. 川西亚高山岷江冷杉和紫果云杉径向生长对气候因子的响应[J]. 林业科学, 2019, 55(7): 1-16. |
[12] | 张守科, 方林鑫, 刘亚宁, 王毅, 张威, 舒金平, 张亚波, 汪阳东, 王浩杰. 茶籽象ATP合成酶基因在不同海拔选择压力下的遗传分化及结构变异[J]. 林业科学, 2019, 55(6): 65-73. |
[13] | 韩小红, 卢赐鼎, 华银, 林浩宇, 是雨霏, 吴松青, 张飞萍, 梁光红. 星天牛转录组及三大解毒酶家族相关基因系统发育分析[J]. 林业科学, 2019, 55(5): 104-113. |
[14] | 于涛, 张宇阳, 高健, 柯蕾, 马文宝, 李俊清. 极小种群濒危植物盐桦叶绿体基因组特征分析[J]. 林业科学, 2019, 55(2): 41-49. |
[15] | 杜会聪,王瑶,方加兴,张珍荫,张苏芳,刘福,张真,孔祥波. 马尾松毛虫线粒体全基因组的测定与分析[J]. 林业科学, 2019, 55(12): 162-172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||