|
崔鸿宾. 山胡椒属系统的研究. 植物分类学报, 1987, 25 (3): 161- 171.
|
|
Cui H P . A study on the system of Lindera. Acta Phytotaxonomica Sinica, 1987, 25 (3): 161- 171.
|
|
蒋明, 柯世省, 王军峰. 多脉铁木叶绿体基因组的序列特征和系统发育. 林业科学, 2020, 56 (5): 60- 68.
|
|
Jiang M , Ke S S , Wang J F . Characterization and phylogenetic analysis of Ostrya multinervi. chloroplast genome. Scientia Silvae Sinicae, 2020, 56 (5): 60- 68.
|
|
袁娟娟. 2018. 四川山胡椒和尖叶蓝花楹化学成分及生物活性的研究. 成都: 西南交通大学硕士学位论文.
|
|
Yuan J J. 2018. Study on the chemical constituents and bioactivities of Lindera setchuenensis Gamble and Jacaranda cuspidifolia Mart. Chengdu: MS thesis of Southwest Jiaotong University. [in Chinese]
|
|
张嘉穗. 2016. 四川山胡椒的化学成分及三种山胡椒属植物成分的活性筛选. 成都: 西南交通大学硕士学位论文.
|
|
Zhang J S. 2016. Studies on the chemical constituents of Lindera setchuenensis Gamble and bioactivities of compounds from three plants of Lindera. Chengdu: MS thesis of Southwest Jiaotong University. [in Chinese]
|
|
郑祎, 张卉, 王钦美, 等. 大花君子兰叶绿体基因组及其特征. 园艺学报, 2020, 47 (12): 2439- 2450.
|
|
Zheng Y , Zhang H , Wang Q M , et al. Complete chloroplast genome sequence of Clivia miniata and its characteristics. Acta Horticulturae Sinica, 2020, 47 (12): 2439- 2450.
|
|
周晓君, 张凯, 彭正锋, 等. 矮牡丹与芍药属其他5个种叶绿体基因组特征的比较. 林业科学, 2020, 56 (4): 82- 88.
|
|
Zhou X J , Zhang K , Peng Z F , et al. Comparative analysis of chloroplast genome characteristics between Paeonia jishanensi. and other five species of Paeonia. Scientia Silvae Sinicae, 2020, 56 (4): 82- 88.
|
|
Beier S , Thiel T , Münch T , et al. MISA-web: a web server for microsatellite prediction. Bioinformatics, 2017, 33 (16): 2583- 2585.
doi: 10.1093/bioinformatics/btx198
|
|
Boel G , Letso R , Neely H , et al. Codon influence on protein expression in E. coli correlates with mRNA levels. Nature, 2016, 529 (7586): 358- 363.
doi: 10.1038/nature16509
|
|
Daniell H , Lin C S , Yu M , et al. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biology, 2016, 17 (1): 134.
doi: 10.1186/s13059-016-1004-2
|
|
Doyle J J , Dickson E E . Preservation of plant samples for DNA restriction endonuclease analysis. Taxon, 1987, 36 (4): 715- 722.
doi: 10.2307/1221122
|
|
Duan H , Zhang Q , Wang C , et al. Analysis of codon usage patterns of the chloroplast genome in Delphinium grandiflorum L. reveals a preference for AT-ending codons as a result of major selection constraints. PeerJ, 2021, 9, e10787.
|
|
Greiner S , Lehwark P , Bock R . OrganellarGenomeDRAW(OGDRAW) version 1. 3. 1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Research, 2019, 47 (W1): W59- W64.
|
|
Jin J J , Yu W B , Yang J B , et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology, 2020, 21 (1): 241.
doi: 10.1186/s13059-020-02154-5
|
|
Katoh K , Rozewicki J , Yamada K D . MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 2019, 20 (4): 1160- 1166.
doi: 10.1093/bib/bbx108
|
|
Kurtz S , Choudhuri J V , Ohlebusch E , et al. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Research, 2001, 29 (22): 4633- 4642.
doi: 10.1093/nar/29.22.4633
|
|
Minh B Q , Schmidt H A , Chernomor O , et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 2020, 37 (5): 1530- 1534.
doi: 10.1093/molbev/msaa015
|
|
Niu Y , Gao C , Liu J . Comparative analysis of the complete plastid genomes of Mangifera species and gene transfer between plastid and mitochondrial genomes. PeerJ, 2021, 9, e10774.
doi: 10.7717/peerj.10774
|
|
Rozas J , Ferrer-Mata A , Sánchez-Delbarrio J C , et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 2017, 34 (12): 3299- 3302.
doi: 10.1093/molbev/msx248
|
|
Sharp P M , Li W . The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Research, 1987, 15 (3): 1281- 1295.
doi: 10.1093/nar/15.3.1281
|
|
Song Y , Yu W B , Tan Y , et al. Evolutionary comparisons of the chloroplast genome in Lauraceae and insights into loss events in the Magnoliids. Genome Biology and Evolution, 2017, 9 (9): 2354- 2364.
doi: 10.1093/gbe/evx180
|
|
Song Y , Yu W B , Tan Y H , et al. Plastid phylogenomics improve phylogenetic resolution in the Lauraceae. Journal of Systematics and Evolution, 2020, 58 (4): 423- 439.
doi: 10.1111/jse.12536
|
|
Tian X , Ye J , Song Y . Plastome sequences help to improve the systematic position of trinerved Lindera species in the family Lauraceae. PeerJ, 2019, 7, e7662.
doi: 10.7717/peerj.7662
|
|
Wei G Q , Chen H , Kong L , et al. Composition and bioactivity of the essential oil from the leaves of Lindera setchuenensis. Chemistry of Natural Compounds, 2016, 52 (3): 520- 522.
doi: 10.1007/s10600-016-1696-2
|
|
Xie D F , Tan J B , Yu Y , et al. Insights into phylogeny, age and evolution of Allium(Amaryllidaceae) based on the whole plastome sequences. Annals of Botany, 2020, 125 (7): 1039- 1055.
doi: 10.1093/aob/mcaa024
|
|
Zhao D N , Ren Y , Zhang J Q . Conservation and innovation: Plastome evolution during rapid radiation of Rhodiola on the Qinghai-Tibetan Plateau. Molecular Phylogenetics and Evolution, 2020, 144, 106713.
doi: 10.1016/j.ympev.2019.106713
|
|
Zhao M L , Song Y , Ni J , et al. Comparative chloroplast genomics and phylogenetics of nine Lindera species(Lauraceae). Scientific Reports, 2018, 8 (1): 8844.
doi: 10.1038/s41598-018-27090-0
|
|
Zheng G , Wei L , Ma L , et al. Comparative analyses of chloroplast genomes from 13 Lagerstroemia(Lythraceae) species: identification of highly divergent regions and inference of phylogenetic relationships. Plant Molecular Biology, 2020, 102 (6): 659- 676.
doi: 10.1007/s11103-020-00972-6
|
|
Zhu B , Qian F , Hou Y F , et al. Complete chloroplast genome features and phylogenetic analysis of Eruca sativa(Brassicaceae). PLoS ONE, 2021, 16 (3): e0248556.
doi: 10.1371/journal.pone.0248556
|