林业科学 ›› 2025, Vol. 61 ›› Issue (3): 169-181.doi: 10.11707/j.1001-7488.LYKX20230440
白永超1(),王卫雄2,3,李宝鑫1,杨静雅2,3,王祺1,周荣飞4,牛犇2,3,裴东1,*(
)
收稿日期:
2023-09-23
出版日期:
2025-03-25
发布日期:
2025-03-27
通讯作者:
裴东
E-mail:baiychao@163.com;pei.dong@caf.ac.cn
基金资助:
Yongchao Bai1(),Weixiong Wang2,3,Baoxin Li1,Jingya Yang2,3,Qi Wang1,Rongfei Zhou4,Ben Niu2,3,Dong Pei1,*(
)
Received:
2023-09-23
Online:
2025-03-25
Published:
2025-03-27
Contact:
Dong Pei
E-mail:baiychao@163.com;pei.dong@caf.ac.cn
摘要:
目的: 了解新疆核桃焦叶症发生现状与分布特征,探究其发生规律及其与微生物组和叶片矿质元素的关联,以明确焦叶症的关键促发因子,为其监测、预报及防控提供科学依据。方法: 以南疆核桃主栽区17个县(市)291个样点的核桃园为研究对象,实地调查焦叶症发生现状,并建立焦叶症发生率和严重度分级标准。通过分析健康和焦叶症叶际、根系和根际土壤微生物群落多样性,并开展叶部真菌致病性测定,以及利用线性回归分析探讨叶片矿质元素与焦叶症严重度的相关性。结果: 田间调查分析结果表明,核桃焦叶症始于一次新梢停长前后,至二次新梢萌发前达到高峰。病症初期表现为叶缘或叶尖枯黄(或焦枯),随后逐渐向叶芯蔓延。轻症时叶缘或叶尖焦枯,重症时整个叶片焦枯,整株受害严重。焦枯前未见叶片萎蔫,焦枯后少见落叶,无明显发病中心和传染性,根据发生率和严重度将其分为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ共5个等级。微生物组分析结果表明,发生焦叶症的叶际、根系和根际土壤中显著富集了耐高盐胁迫的盐单胞菌属(Halomonas)、假单胞菌属(Pseudomonas)及Haliangium属等细菌类群;叶际中显著富集了链格孢属(Alternaria)、炭疽菌属(Colletotrichum)以及未分类亚隔孢壳科(Unclassied-Didymellaceae)等类群。叶片致病性测定结果表明,这些显著富集的叶部真菌均不是引起焦叶症的主要生物因子。叶片生理特性分析结果表明,焦叶症的叶片中O2?和H2O2的含量显著增加,且叶片中Cl?、Na元素、B元素含量随焦叶症严重度的加剧呈显著增加,而叶片中N、K、Fe元素含量呈显著降低趋势。结论: 新疆核桃焦叶症叶际、根系和根际土壤中显著富集了耐高盐胁迫的细菌群落。叶部真菌不是引起焦叶症的主要生物因子,而Cl?、Na元素、B元素毒害和N、K、Fe元素亏缺可能是引起叶片焦枯的关键非生物因子。因此,核桃焦叶症可能是一种由非生物因子引起的生理性病害。
中图分类号:
白永超,王卫雄,李宝鑫,杨静雅,王祺,周荣飞,牛犇,裴东. 新疆核桃焦叶症发生规律及其影响因子[J]. 林业科学, 2025, 61(3): 169-181.
Yongchao Bai,Weixiong Wang,Baoxin Li,Jingya Yang,Qi Wang,Rongfei Zhou,Ben Niu,Dong Pei. Juglans Leaf Necrosis: Disease Development and Influencing Factors[J]. Scientia Silvae Sinicae, 2025, 61(3): 169-181.
图2
南疆核桃焦叶症叶片症状 A?E:焦叶症树的小叶从叶尖焦枯向叶基蔓延并逐渐加重的现象;F?J:焦叶症树的小叶从叶缘焦枯向主叶脉蔓延并逐渐加重的现象;K:焦叶症树的复叶从叶尖焦枯向叶基蔓延的现象;L:焦叶症树的复叶从叶缘焦枯向主叶脉蔓延的现象。A?E: Spreading and aggravating of leaflet from tip to base of a tree. F?J: Spreading and aggravating of leaflet from the leaf edge to the main leaf vein. K: Spreading of compound leaves of a tree from tip to base. L: Spreading of the compound leaves of a tree from the leaf edge to the main leaf vein."
表1
南疆核桃主栽区焦叶症发生率(IN)和严重度(SN)分级标准建立(均值±标准误)①"
焦叶症等级 JLN grades | 发生率 Incidence | 严重度 Severity | 危害等级 Hazard grades | |||||||
实测值 Measured value (n= | 变异系数 Variation coefficient | 分级值 Interval values | 占比 Proportion | 实测值 Measured value (n=4 314) | 变异系数 Variation coefficient | 分级值 Interval values | 占比 Proportion | |||
Ⅰ | 14.04±8.89 | 63.32 | < 20 | 88.00 | 8.81±5.84 | 66.37 | < 10 | 69.37 | 轻度Mild | |
Ⅱ | 30.82±14.51 | 47.08 | 20~50 | 78.47 | 14.94±8.76 | 58.61 | 10~20 | 50.00 | 轻度Mild | |
Ⅲ | 52.65±19.84 | 37.68 | 50~70 | 56.84 | 23.92±10.74 | 44.88 | 20~30 | 45.24 | 中度Moderate | |
Ⅳ | 75.89±16.36 | 21.56 | 70~90 | 77.35 | 38.82±13.71 | 35.32 | 30-50 | 56.45 | 中度Moderate | |
Ⅴ | 94.25±8.20 | 8.70 | > 90 | 88.14 | 53.74±12.69 | 23.61 | > 50 | 53.00 | 重度Severe |
鲍士旦. 2007. 土壤农化分析. 3版 北京: 中国农业出版社. | |
Bao Shidan. 2007. Soil agrochemical analysis. Third Edition. Beijing: China Agriculture Press. [in Chinese] | |
陈述庭, 马万占, 温桂华, 等. 板栗叶片焦枯症病因鉴定与防治研究. 河北果树, 2003, (3): 11- 13.
doi: 10.3969/j.issn.1006-9402.2003.03.007 |
|
Chen S T, Ma W Z, Wen G H, et al. Study on pathogeny and controlling technologies of shrivelled leaves of Chinese chestnut. Hebei Fruits, 2003, (3): 11- 13.
doi: 10.3969/j.issn.1006-9402.2003.03.007 |
|
程宇豪, 黄小贞, 张金峰, 等. 贵州茶叶斑点病病原系统发育学分析与生物学特性. 分子植物育种, 2022, 20 (13): 4468- 4476. | |
Cheng Y H, Huang X Z, Zhang J F, et al. Phylogenetic analysis and biological characteristics of tea leaf spot disease in Guizhou. Molecular Plant Breeding, 2022, 20 (13): 4468- 4476. | |
高瑞霞. 2017. 新疆沙井子垦区环境因子对核桃焦叶病的影响. 阿拉尔: 塔里木大学. | |
Gao R X. 2017. Study on effect of environmental factors on disease of walnut leafscorch in Xinjiang Shajingzi region. Aral: Tarim University. [in Chinese] | |
宫峥嵘, 王一峰, 王 瀚, 等. 核桃矿质营养研究进展. 林业科学, 2021, 57 (1): 178- 190.
doi: 10.11707/j.1001-7488.20210119 |
|
Gong Z R, Wang Y F, Wang H, et al. Research Progress on Mineral Nutrition of Walnut. Scientia Silvae Sinicae, 2021, 57 (1): 178- 190.
doi: 10.11707/j.1001-7488.20210119 |
|
韩 敏, 蒋 萍. 核桃叶斑病病原菌的分子鉴定. 新疆农业科学, 2015, 52 (1): 91- 96. | |
Han M, Jiang P. Identification of the pathogens of walnut leaf spot disease. Xinjiang Agricultural Sciences, 2015, 52 (1): 91- 96. | |
姬新颖, 唐佳莉, 李 敖, 等. 盐胁迫下不同基因型核桃实生幼苗生长及生理响应. 林业科学, 2024, 60 (2): 65- 77.
doi: 10.11707/j.1001-7488.LYKX20230164 |
|
Ji X Y, Tang J L, Li A, et al. Growth and physiological responses of walnut seedlings with different genotypes under salt ttress. Scientia Silvae Sinicae, 2024, 60 (2): 65- 77.
doi: 10.11707/j.1001-7488.LYKX20230164 |
|
贾桂燕, 王永杰, 陈志康, 等. 2022. 盐单胞菌DSM 16354T中新型耐盐基因的克隆及解析. 中国生物工程杂志, 42(3): 27−37. | |
Jia G Y, Wang Y J, Chen Z K, et al. 2022, loning and analysis of novel functional genes in Halomonas alkaliphila DSM 16354T. China Biotechnology, 42(3): 27−37. [in Chinese] | |
梁 智, 张计峰, 井 然, 等. 土壤及叶面调控对核桃“叶缘焦枯病”的防控效果. 新疆农业科学, 2014, 51 (9): 1652- 1657. | |
Liang Z, Zhang J F, Jing R, et al. The prevention effect of soil and foliar regulation on “leaf margin scorch disease” of walnut. Xinjiang Agricultural Sciences, 2014, 51 (9): 1652- 1657. | |
林雪坚, 吴光金, 陈贻金, 等. 枣树焦叶病病原及发病规律的研究. 中南林学院学报, 1993, (1): 58- 63. | |
Lin X J, Wu G J, Chen Y J, et al. Study on pathogen and occurrence of jujube leaf scorch. Journal of Central South Forestry University, 1993, (1): 58- 63. | |
李冰茹, 高 冲, 李 杨, 等. 水浴提取-正己烷净化-离子色谱法测定三七中氯离子的含量. 理化检验-化学分析, 2023, 59 (2): 210- 214. | |
Li B R, Gao C, Li Y, et al. Determination of chloride ion in panax notoginseng by ion chromatography with water bath extraction and n-hexane purification. Physical Testing and Chemical Analysis(Part B: Chemical Analysis, 2023, 59 (2): 210- 214. | |
李 源, 马文强, 朱占江, 等. 2019. 新疆核桃产业发展现状及对策建议. 农学学报, 9(7): 80−86. | |
Li Y, Ma W Q, Zhu Z J, et al. 2019, . Development status of walnut industry in Xinjiang and suggestions for countermeasures. Journal of Agriculture, 9(7): 80−86. [in Chinese] | |
门中华. 2004. 冬小麦硝态氮利用的生理特征及其影响因素. 杨凌: 西北农林科技大学. | |
Men Z H. 2004. Physiological characteristics and influence factor of nitrate-N use of winter wheat. Yangling: Northwest A&F University. [in Chinese] | |
任 菲, 董 炜, 史胜青, 等. 板栗叶焦枯病相关病菌分离及病因初探. 林业科学研究, 2021, 34 (2): 185- 192. | |
Ren F, Dong W, Shi S Q, et al. Primary study on causes and associated pathogens for chestnut leaf scorch. Forest Research, 2021, 34 (2): 185- 192. | |
王 杰, 徐方媛, 蒋 萍, 等. 主要气象因子对核桃叶斑病发生动态的影响. 西北林学院学报, 2019, 34 (5): 127- 133.
doi: 10.3969/j.issn.1001-7461.2019.05.20 |
|
Wang J, Xu F Y, Jiang P, et al. Infiuence of the key meteorological factors on the occurrence dynamics of walnut leaf spot disease. Journal of Northwest Forestry University, 2019, 34 (5): 127- 133.
doi: 10.3969/j.issn.1001-7461.2019.05.20 |
|
徐秉良, 曹克强. 2017. 植物病理学. 第二版. 北京: 中国林业出版社. | |
Xu B L, Cao K Q. 2017. Plant pathology. Second edition. Beijing: China Forestry Publishing House. [in Chinese] | |
严兆福. 1994. 新疆的核桃. 乌鲁木齐: 新疆科技卫生出版社. | |
Yan Z F. 1994. Xinjiang walnut. Urumqi: Xinjiang Science and Technology Health Publishing. [in Chinese] | |
张小雪, 巫伟峰, 傅振星, 等. ‘芙蓉李’焦叶症与矿质元素含量的关联性. 福建农林大学学报(自然科学版), 2020, 49 (6): 760- 765. | |
Zhang X X, Wu W F, Fu Z X, et al. Correlation analysis between leaf scorch and mineral element contents in plum fruit cv. ‘Furongli’. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2020, 49 (6): 760- 765. | |
张计峰, 梁 智, 邹耀湘, 等. 新疆南疆核桃叶缘焦枯病成因分析研究. 新疆农业科学, 2012, 49 (7): 1261- 1265.
doi: 10.6048/j.issn.1001-4330.2012.07.014 |
|
Zhang J F, Liang Z, Zou Y X, et al. Study on causation of walnut withered leaf symptom in Southern Xinjiang. Xinjiang Agricultural Sciences, 2012, 49 (7): 1261- 1265.
doi: 10.6048/j.issn.1001-4330.2012.07.014 |
|
Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55, 373- 99.
doi: 10.1146/annurev.arplant.55.031903.141701 |
|
Alscher R G, Donahue J L, Cramer C L. Reactive oxygen species and antioxidants: relationships in green cells. Physiologia Plantarum, 1997, 100 (2): 224- 233.
doi: 10.1111/j.1399-3054.1997.tb04778.x |
|
Bulgarelli D, Rott M, Schlaeppi K, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 2012, 488 (7409): 91- 95.
doi: 10.1038/nature11336 |
|
Brown R W, Chadwick D R, Zang H, et al. Use of metabolomics to quantify changes in soil microbial function in response to fertilizer nitrogen supply and extreme drought. Soil Biology and Biochemistry, 2021, 160, 108351.
doi: 10.1016/j.soilbio.2021.108351 |
|
Beckers B, Beeck M O D, Weyens N, et al. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome, 2017, 5, 25.
doi: 10.1186/s40168-017-0241-2 |
|
Bechtold U, Karpinski S, Mullineaux P M. 2005. The influence of the light environment and photosynthesis on oxidative signalling responses in plant–biotrophic pathogen interactions. Plant, Cell & Environment, 28(8): 1046−1055. | |
Baki G K A E, Siefritz F, Man H M, et al. 2000. Nitrate reductase in Zea mays L. under salinity. Plant, Cell & Environment, 23(5): 515−521. | |
Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 2003, 91 (2): 179- 194.
doi: 10.1093/aob/mcf118 |
|
Bolyen E, Rideout J R, Dillon M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 2019, 37 (8): 852- 857.
doi: 10.1038/s41587-019-0209-9 |
|
Briat J F, Dubos C, Gaymard F. Iron nutrition, biomass production, and plant product quality. Trends in Plant Science, 2015, 20 (1): 33- 40.
doi: 10.1016/j.tplants.2014.07.005 |
|
Cui W L, Lu X Q, Bian J Y, et al. Curvularia spicifera and Curvularia muehlenbeckiae causing leaf blight on Cunninghamia lanceolata. Plant Pathology, 2020, 69, 1139- 1147.
doi: 10.1111/ppa.13198 |
|
Cregger M A, Veach A M, Yang Z K, et al. The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome, 2018, 6, 31.
doi: 10.1186/s40168-018-0413-8 |
|
Chen S F, Lombard L, Roux J, et al. Novel species of Calonectria associated with Eucalyptus leaf blight in Southeast China. Persoonia Molecular Phylogeny & Evolution of Fungi, 2011a, 26 (1): 1- 12. | |
Chen L, Han Y, Jiang H. et al. Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis. Journal of Experimental Botany, 2011b, 62, 5037- 5050.
doi: 10.1093/jxb/err203 |
|
Dat J, Vandenabeele S, Vranova E, et al. Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences CMLS, 2000, 57 (5): 779- 795.
doi: 10.1007/s000180050041 |
|
Flowers T J, Colmer T D. 2008. Salinity tolerance in halophytes. New Phytologist, 945−963. | |
Flowers T J, Yeo A R. Ion relations of plants under drought and salinity. Functional Plant Biology, 1986, 13 (1): 75- 91.
doi: 10.1071/PP9860075 |
|
Gurtovenko A A, Vattulainen I. Intrinsic potential of cell membranes: opposite effects of lipid transmembrane asymmetry and asymmetric salt ion distribution. The Journal of Physical Chemistry B, 2009, 113 (20): 7194- 7198.
doi: 10.1021/jp902794q |
|
Hassani A, Azapagic A, Shokri N. Predicting long-term dynamics of soil salinity and sodicity on a global scale. Proceedings of the National Academy of Sciences, 2020, 117 (52): 33017- 33027.
doi: 10.1073/pnas.2013771117 |
|
Hu L, Lu H, Liu Q, et al. Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiology, 2005, 25 (10): 1273- 1281.
doi: 10.1093/treephys/25.10.1273 |
|
Liu M, Bi J W, Liu X C, et al. Microstructural and physiological responses to cadmium stress under different nitrogen levels in Populus cathayana females and males. Tree Physiology, 2020, 40, 30- 45.
doi: 10.1093/treephys/tpz115 |
|
Liu Y, Maniero R A, Giehi R F H, et al. PDX1.1-dependent biosynthesis of vitamin B6 protects roots from ammonium-induced oxidative stress. Molecular Plant, 2022, 15, 820- 839.
doi: 10.1016/j.molp.2022.01.012 |
|
Lombard L, Chen S F, Mou X, et al. New species, hyper-diversity and potential importance of Calonectria spp. from Eucalyptus in South China. Studies in Mycology, 2015, 80 (80): 151- 188. | |
Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants. Trends in Plant Science, 2004, 9 (10): 490- 498.
doi: 10.1016/j.tplants.2004.08.009 |
|
Møller I M, Sweetlove L J. ROS signalling–specificity is required. Trends in Plant Science, 2010, 15 (7): 370- 374.
doi: 10.1016/j.tplants.2010.04.008 |
|
Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59, 651.
doi: 10.1146/annurev.arplant.59.032607.092911 |
|
Munns R, James R A, Läuchli A. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 2006, 57 (5): 1025- 1043.
doi: 10.1093/jxb/erj100 |
|
Nath K, Lu Y. A paradigm of reactive oxygen species and programmed cell death in plants. Journal of Cell Science and Therapy, 2015, 6 (2): 1- 2. | |
Nakahara H, Matsuzoe N, Taniguchi T, et al. Effect of Burkholderia sp. and Pseudomonas spp. inoculation on growth, yield, and absorption of inorganic components in tomato ‘Micro-Tom’ under salinity conditions. Journal of Plant Interactions, 2022, 17 (1): 277- 289.
doi: 10.1080/17429145.2022.2035439 |
|
Niu B, Paulson J N, Zheng X, et al. Simplified and representative bacterial community of maize roots. Proceedings of the National Academy of Sciences, 2017, 114 (12): E2450- E2459. | |
Ramos D E. 1998. Walnut production manual. Oakland: University of California Division of Agriculture and Natural Resources, Cooperative Extension. | |
Ryosuke F, Yasuko J, Takashi I, et al. 2002. Haliangium ochraceum gen. nov., sp. nov. and Haliangium tepidum sp. nov. : novel moderately halophilic myxobacteria isolated from coastal saline environments. Journal of General and Applied Microbiology, 48(2): 109−116. | |
Wu L, Wang Y, Zhang S, et al. Fertilization effects on microbial community composition and aggregate formation in saline-alkaline soil. Plant and Soil, 2021, 463 (1): 523- 535. | |
Wimmer M A, Mühling K H, Läuchli A, et al. 2003. The interaction between salinity and boron toxicity affects the subcellular distribution of ions and proteins in wheat leaves. Plant, Cell & Environment, 26(8): 1267−1274. | |
Xiao Q Y, Chen Y, Liu C W, et al. MtNPF6.5 mediates chloride uptake and nitrate preference in Medicago roots. The EMBO Journal, 2021, e106847, 1- 22. | |
Yung L, Bertheau C, Tafforeau F, et al. Partial overlap of fungal communities associated with nettle and poplar roots when co-occurring at a trace metal contaminated site. Science of the Total Environment, 2021, 782, 146692.
doi: 10.1016/j.scitotenv.2021.146692 |
|
Zhang H M, Zhu J H, Gong Z Z, et al. Abiotic stress responses in plants. Nature Reviews Genetics, 2022, 23 (2): 104- 119.
doi: 10.1038/s41576-021-00413-0 |
|
Zhang J Y, Liu Y X, Zhang N, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology, 2019, 37, 676- 684.
doi: 10.1038/s41587-019-0104-4 |
[1] | 姬新颖, 唐佳莉, 李敖, 郑旭, 王红霞, 张俊佩. 盐胁迫下不同基因型核桃实生幼苗生长及生理响应[J]. 林业科学, 2024, 60(2): 65-77. |
[2] | 王茹,罗莎莎,王如月,杨梦思,孙雅丽,虎海防,张萍. 不同生长时期核桃叶片中挥发性有机物的GC-IMS分析[J]. 林业科学, 2023, 59(6): 57-73. |
[3] | 苑轲,黄坚钦,王克涛,夏国华,张启香,徐川梅. 山核桃寡核苷酸探针开发及其应用[J]. 林业科学, 2023, 59(5): 88-99. |
[4] | 曹明奡,张菲,黄光明,刘瑞成,刘利平,吴强盛,徐永杰. 丛枝菌根真菌对低磷胁迫下核桃幼苗根系磷吸收的影响及机制[J]. 林业科学, 2023, 59(12): 117-124. |
[5] | 牛耕耘,肖炜,魏美才. 巨棒蜂属(膜翅目: 棒蜂科)一新种暨巨棒蜂属亚洲种类检索表[J]. 林业科学, 2021, 57(5): 160-164. |
[6] | 陈新,王敏,傅茂润,王贵芳,相昆,刘庆忠,焦文晓,张美勇,许海峰. 核桃炭疽病发生相关的酚类物质代谢分析[J]. 林业科学, 2021, 57(10): 71-80. |
[7] | 宫峥嵘,王一峰,王瀚,李唯,耿明建,张文明,刘露. 核桃矿质营养研究进展[J]. 林业科学, 2021, 57(1): 178-190. |
[8] | 王林,代永欣,张劲松,孟平,孙胜,李豪,万贤崇. 水分和光照条件对核桃-黄豆农林复合系统中黄豆光合作用和生长的影响[J]. 林业科学, 2020, 56(4): 188-196. |
[9] | 任飞,张佳琦,胡恒康,梁璧,黄有军,娄和强,张启香. 红色荧光蛋白基因DsRED在核桃植株再生过程中的表达稳定性[J]. 林业科学, 2020, 56(12): 166-176. |
[10] | 梁璧,张佳琦,任飞,胡恒康,徐川梅,胡渊渊,黄有军,娄和强,张启香. 山核桃贝壳杉烯氧化酶基因CcKO的克隆和表达分析[J]. 林业科学, 2020, 56(10): 70-82. |
[11] | 周乃富, 宋晓波, 张俊佩, 常英英, 裴东. 核桃芽接愈合的组织学机制[J]. 林业科学, 2019, 55(6): 37-43. |
[12] | 张佳琦, 胡恒康, 徐川梅, 胡渊渊, 黄有军, 夏国华, 黄坚钦, 常英英, 叶磊, 娄和强, 张启香. 核桃JrGA2ox基因的克隆、亚细胞定位及功能验证[J]. 林业科学, 2019, 55(2): 50-60. |
[13] | 张韵,刘涛,张涛,谢乐添,黄坚钦,王正加,胡渊渊. 薄壳山核桃果实假果皮的光合特性[J]. 林业科学, 2019, 55(10): 10-18. |
[14] | 黄仁, 张韵, 张启香, 王正加, 夏国华, 黄坚钦, 胡渊渊. 异源授粉山核桃果皮光合能力差异的转录组分析[J]. 林业科学, 2019, 55(1): 128-137. |
[15] | 曾楚楚, 娄钧翼, 郭明, 王冰璇, 卢闻君. 防治核桃干腐病的新型纳米生物基农药缓释胶囊制备及缓释性能[J]. 林业科学, 2018, 54(5): 87-100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||