林业科学 ›› 2025, Vol. 61 ›› Issue (3): 158-168.doi: 10.11707/j.1001-7488.LYKX20230621
收稿日期:
2023-12-11
出版日期:
2025-03-25
发布日期:
2025-03-27
通讯作者:
杨海芸
E-mail:yhy2006@zafu.edu.cn
基金资助:
Sicheng Jiang1,Ni Wang1,Huibin Gao2,Guoqiang Zhou2,Haiyun Yang1,*()
Received:
2023-12-11
Online:
2025-03-25
Published:
2025-03-27
Contact:
Haiyun Yang
E-mail:yhy2006@zafu.edu.cn
摘要:
目的: 通过探究花叶矢竹体细胞无性系变异株系茎秆形态、解剖结构及细胞壁组分等特征的动态变化,揭示花叶矢竹茎秆倒伏的生理机制。方法: 以发生体细胞无性系变异的花叶矢竹矮化倒伏突变体(dwarf and lodging mutant,DWF)为研究对象,以正常组织培养的花叶矢竹(WT)为对照,同时移栽90、180、270、和360天后,分别调查其新生竹秆的表型、横切面解剖结构、细胞壁组分含量的变化。结果: DWF在不同移栽时期中茎秆形态、解剖结构、细胞壁组分含量与WT差异显著。1)相较于WT,DWF茎秆在4个移栽时期中均发生不同程度的倒伏,移栽90天时茎秆与地面夹角为35.27°,茎秆倒伏程度最大,移栽360天时茎秆与地面夹角为73.13°,茎秆倒伏程度最小。2)DWF茎秆直径、茎秆高度、基部节间长度极显著低于WT,移栽360天时差异最大;DWF生长缓慢,移栽270~360天时,DWF新生茎秆高度增幅仅为WT的21.41%,新生茎秆直径增幅只有WT的17.49%。3)DWF大小维管束数量及面积均极显著低于WT,移栽360天时DWF大维管束数量及面积分别比WT低65.71%及55.35%,小维管束数量及面积分别比WT低75.44%及55.51%,WT新生茎秆大小维管束数量及面积快速增长时,DWF增幅缓慢;DWF厚壁组织厚度变薄,在4个时期中与WT均存在极显著差异,分别比WT低50.21%、55.77%、54.59%、45.41%;DWF髓腔发育缓慢,移栽270天与360天时出现髓腔,髓腔直径极显著低于WT。4)随着移栽时间的延长,DWF新生茎秆的木质素、纤维素含量增加,但极显著低于WT,且半纤维素含量无显著差异,节间木质素及纤维素沉积程度也低于WT。5)DWF茎秆倒伏程度与其茎秆直径存在显著负相关关系,与大小维管束数量及面积、厚壁组织厚度、木质素及纤维素含量存在极显著负相关关系。结论: 相较于花叶矢竹WT,DWF在发育过程中,茎秆高度增长滞缓和呈现矮化,茎秆强度弱和发生倒伏。DWF茎秆直径小、大小维管束的数量少和面积小、厚壁组织厚度低,是其发生倒伏的一个重要原因;DWF细胞壁的木质素及纤维素含量低,造成其茎秆强度弱,是其发生倒伏的另一原因。
中图分类号:
姜思成,王妮,高会彬,周国强,杨海芸. 花叶矢竹矮化倒伏突变体DWF茎秆结构及细胞壁组分含量分析[J]. 林业科学, 2025, 61(3): 158-168.
Sicheng Jiang,Ni Wang,Huibin Gao,Guoqiang Zhou,Haiyun Yang. Analysis of Culm Structure and Cell Wall Component Content in Dwarf Lodging Mutant of Pseudosasa japonica f. akebonosuji[J]. Scientia Silvae Sinicae, 2025, 61(3): 158-168.
图3
不同移栽时间的野生型与矮化倒伏突变体茎秆横切结构比较及相关性分析 a, b分别为移栽90天DWF与WT;c, d分别为移栽180天DWF与WT;e, f分别为移栽270天DWF与WT;g, h分别为移栽360天DWF与WT。DWF:矮化倒伏突变体;WT:野生型;NLVB:大维管束数量;NSVB:小维管束数量;ALVB:大维管束面积;ASVB:小维管束面积;TS:厚壁组织厚度;DPC:髓腔直径;ASG:茎秆与地面夹角;标尺=100 μm。a and b are DWF and WT transplanted for 90 days, respectively; c and d are DWF and WT transplanted for 180 days, respectively; e and f are DWF and WT transplanted for 270 days, respectively; g and h are DWF and WT transplanted for 360 days, respectively. DWF: Dwarf and lodging mutant; WT: Wildtype; NLVB: Number of large vascular bundle; NSVB: Number of small vascular bundle; ALVB: Area of large vascular bundle; ASVB: Area of small vascular bundle; TS: Thickness of sclerenchyma; DPC: Diameter of pith cavity; ASG: Angle between stem and ground; Scale bars = 100 μm."
边大红, 刘梦星, 牛海峰, 等. 施氮时期对黄淮海平原夏玉米茎秆发育及倒伏的影响. 中国农业科学, 2017, 50 (12): 2294- 2304.
doi: 10.3864/j.issn.0578-1752.2017.12.010 |
|
Bian D H, Liu M X, Niu H F, et al. Effects of nitrogen application times on stem traits and lodging of summer maize (Zea mays L. ) in the Huang-Huai-Hai Plain. Scientia Agricultura Sinica, 2017, 50 (12): 2294- 2304.
doi: 10.3864/j.issn.0578-1752.2017.12.010 |
|
陈柯伊, 李朝娜, 成敏敏, 等. 不同叶色矢竹叶绿体结构和光系统特性差异. 植物学报, 2018, 53 (4): 509- 518.
doi: 10.11983/CBB17115 |
|
Chen K Y, Li C N, Cheng M M, et al. Chloroplast ultrastructure and chlorophyll fluorescence characteristics of three cultivars of Pseudosasa japonica. Chinese Bulletin of Botany, 2018, 53 (4): 509- 518.
doi: 10.11983/CBB17115 |
|
陈晓光, 石玉华, 王成雨, 等. 氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒伏性的关系. 中国农业科学, 2011, 44 (17): 3529- 3536.
doi: 10.3864/j.issn.0578-1752.2011.17.005 |
|
Chen X G, Shi Y H, Wang C Y, et al. Effects of nitrogen and PP333 application on the lignin synthesis of stem in relation to lodging resistance of wheat. Scientia Agricultura Sinica, 2011, 44 (17): 3529- 3536.
doi: 10.3864/j.issn.0578-1752.2011.17.005 |
|
胡 昊, 李莎莎, 华 慧, 等. 不同小麦品种主茎茎秆形态结构特征及其与倒伏的关系. 麦类作物学报, 2017, 37 (10): 1343- 1348.
doi: 10.7606/j.issn.1009-1041.2017.10.10 |
|
Hu H, Li S S, Hua H, et al. Research on stalk morphological structure characteristics and its relationship between with the lodging of different wheat varieties. Journal of Triticeae Crops, 2017, 37 (10): 1343- 1348.
doi: 10.7606/j.issn.1009-1041.2017.10.10 |
|
李潞滨, 武静宇, 胡 陶, 等. 毛竹基因组大小测定. 植物学通报, 2008, 25 (5): 574- 578. | |
Li L B, Wu J Y, Hu T, et al. Estimation of genome size of moso bamboo (Phyllostachys edulis). Chinese Bulletin of Botany, 2008, 25 (5): 574- 578. | |
刘 琦, 王仁才, 王 然. 植物体细胞无性系的变异与检测. 青岛农业大学学报(自然科学版), 2022, 39 (1): 8- 18. | |
Liu Q, Wang R C, Wang R. The plant somaclonal variation and detection. Journal of Qingdao Agricultural University (Natural Science), 2022, 39 (1): 8- 18. | |
刘魏魏, 赵会杰, 李红旗, 等. 密度、种植方式对夏玉米茎秆抗倒伏能力的影响. 河南农业科学, 2011, 40 (8): 75- 78.
doi: 10.3969/j.issn.1004-3268.2011.08.019 |
|
Liu W W, Zhao H J, Li H Q, et al. Effects of planting densities and modes on stem lodging resistance of summer maize. Journal of Henan Agricultural Sciences, 2011, 40 (8): 75- 78.
doi: 10.3969/j.issn.1004-3268.2011.08.019 |
|
乔春贵. 作物抗倒伏性的综合指标—倒伏指数. 吉林农林大学学报, 1988, 10 (1): 7- 10. | |
Qiao C G. Lodging index-a synthetic indication of lodging resistance. Journal of Jilin Agricultural University, 1988, 10 (1): 7- 10. | |
邵庆勤, 周 琴, 王 笑, 等. 种植密度对不同小麦品种茎秆形态特征、化学成分及抗倒性能的影响. 南京农业大学学报, 2018, 41 (5): 808- 816.
doi: 10.7685/jnau.201805046 |
|
Shao Q Q, Zhou Q, Wang X, et al. Effects of planting density on stem morphological characteristics, chemical composition and lodging resistance of different wheat varieties. Journal of Nanjing Agricultural University, 2018, 41 (5): 808- 816.
doi: 10.7685/jnau.201805046 |
|
田文涛, 邵 平, 王 燚, 等. 超级杂交稻茎秆形态结构及其与抗倒性的关系研究. 杂交水稻, 2017, 32 (2): 67- 71, 81. | |
Tian W T, Shao P, Wang Y, et al. Stem morphological structure of super hybrid rice and its relationship with lodging resistance. Hybrid Rice, 2017, 32 (2): 67- 71, 81. | |
王身昌, 胡尚连, 曹 颖, 等. 梁山慈竹(Dendrocalamus farinosus)体细胞突变体No. 30 生物量及品质特性分析. 基因组学与应用生物学, 2015, 34 (11): 2508- 2513. | |
Wang S C, Hu S L, Cao Y, et al. Analysis on biomass and quality characteristics of somaclonal mutant No. 30 in Dendrocalamus farinosus. Genomics and Applied Biology, 2015, 34 (11): 2508- 2513. | |
肖世和, 张秀英, 闫长生, 等. 2002. 小麦茎秆强度的鉴定方法研究. 中国农业科学35(1): 7-11. | |
Xiao S H, Zhang X Y, Yan C S, et al. 2002. Determination of resistance to lodging by stem strength in wheat. Scientia Agricultura Sinica, 35(1): 7-11. [in Chinese] | |
杨海芸, 王晓芹, 张 宁, 等. 日本花叶矢竹组织培养与叶色变异研究. 竹子研究汇刊, 2010, 29 (4): 15- 20. | |
Yang H Y, Wang X Q, Zhang N, et al. Tissue culture and leaf color variation of Pseudosasa japonica cv. akebonosuji. Journal of Bamboo Research, 2010, 29 (4): 15- 20. | |
杨艳华, 朱 镇, 张亚东, 等. 水稻茎秆解剖结构与抗倒伏能力关系的研究. 广西植物, 2012, 32 (6): 834- 839.
doi: 10.3969/j.issn.1000-3142.2012.06.022 |
|
Yang Y H, Zhu Z, Zhang Y D, et al. Relationship between anatomic structure of the stem and lodging resistance of rice. Guihaia, 2012, 32 (6): 834- 839.
doi: 10.3969/j.issn.1000-3142.2012.06.022 |
|
张志强, 付 晶, 王奉芝, 等. 小麦抗倒性研究进展. 安徽农业科学, 2013, 41 (5): 2020- 2022.
doi: 10.3969/j.issn.0517-6611.2013.05.053 |
|
Zhang Z Q, Fu J, Wang F Z, et al. Research progress in wheat lodging. Journal of Anhui Agricultural Sciences, 2013, 41 (5): 2020- 2022.
doi: 10.3969/j.issn.0517-6611.2013.05.053 |
|
Cevallos-Cevallos J M, Jines C, Maridueña-Zavala M G, et al. GC-MS metabolite profiling for specific detection of dwarf somaclonal variation in banana plants. Applications in Plant Sciences, 2018, 6 (11): e01194. | |
Chen M, Guo L, Ramakrishnan M, et al. Rapid growth of moso bamboo (Phyllostachys edulis): cellular roadmaps, transcriptome dynamics, and environmental factors. Plant Cell, 2022, 34 (10): 3577- 3610.
doi: 10.1093/plcell/koac193 |
|
Dorairaj D, Ismail M R. Distribution of silicified microstructures, regulation of cinnamyl alcohol dehydrogenase and lodging resistance in silicon and paclobutrazol mediated Oryza sativa. Frontiers in Physiology, 2017, 8, 491.
doi: 10.3389/fphys.2017.00491 |
|
Fossi M, Amundson K, Kuppu S, et al. Regeneration of Solanum tuberosum plants from protoplasts induces widespread genome instability. Plant Physiology, 2019, 180 (1): 78- 86.
doi: 10.1104/pp.18.00906 |
|
Fujino K, Matsuda Y, Ozawa K, et al. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Molecular Genetics and Genomics, 2008, 279 (5): 499- 507.
doi: 10.1007/s00438-008-0328-3 |
|
Guo L, Sun X P, Li Z G, et al. Morphological dissection and cellular and transcriptome characterizations of bamboo pith cavity formation reveal a pivotal role of genes related to programmed cell death. Plant Biotechnology Journal, 2019, 17 (5): 982- 997.
doi: 10.1111/pbi.13033 |
|
Han L L, Jiang C G, Zhang W, et al. Morphological characterization and transcriptome analysis of new dwarf and narrow-leaf (dnl2) mutant in maize. International Journal of Molecular Sciences, 2022, 23 (2): 795.
doi: 10.3390/ijms23020795 |
|
Hirano K, Okuno A, Hobo T, et al. Utilization of stiff culm trait of rice smos1 mutant for increased lodging resistance. PLoS One, 2014, 9 (7): e96009.
doi: 10.1371/journal.pone.0096009 |
|
Jones L, Ennos A R, Turner S R. Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant Journal, 2001, 26 (2): 205- 216.
doi: 10.1046/j.1365-313x.2001.01021.x |
|
Kashiwagi T, Togawa E, Hirotsu N, et al. Improvement of lodging resistance with QTLs for stem diameter in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2008, 117 (5): 749- 757.
doi: 10.1007/s00122-008-0816-1 |
|
Kong E Y, Liu D C, Guo X L, et al. Anatomical and chemical characteristics associated with lodging resistance in wheat. Crop Journal, 2013, 1 (1): 43- 49.
doi: 10.1016/j.cj.2013.07.012 |
|
Liu S T, Huang Y W, Xu H, et al. Genetic enhancement of lodging resistance in rice due to the key cell wall polymer lignin, which affects stem characteristics. Breeding Science, 2018, 68 (5): 508- 515.
doi: 10.1270/jsbbs.18050 |
|
Liu W G, Deng Y C, Hussain S, et al. Relationship between cellulose accumulation and lodging resistance in the stem of relay intercropped soybean [Glycine max (L.) Merr.]. Field Crops Research, 2016, 196, 261- 267.
doi: 10.1016/j.fcr.2016.07.008 |
|
Peng Z H, Zhang C L, Zhang Y, et al. Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis). PLoS One, 2013, 8 (11): e78944.
doi: 10.1371/journal.pone.0078944 |
|
Qiao G R, Li H Y, Liu M Y, et al. Callus induction and plant regeneration from anthers of Dendrocalamus latiflorus Munro. In Vitro Cellular and Development Biology, 2013, 49 (4): 375- 382.
doi: 10.1007/s11627-013-9498-8 |
|
Qiao G R, Liu M Y, Song K L, et al. Phenotypic and comparative transcriptome analysis of different ploidy plants in Dendrocalamus latiflorus Munro. Frontiers in Plant Science, 2017, 8, 1371.
doi: 10.3389/fpls.2017.01371 |
|
Sazuka T, Kamiya N, Nishimura T, et al. A rice tryptophan deficient dwarf mutant, tdd1, contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos. Plant Journal, 2009, 60 (2): 227- 241.
doi: 10.1111/j.1365-313X.2009.03952.x |
|
Thompson D A W. 1945. On growth and form. New York: University Press. | |
Tsukaya H, Beemster G T. Genetics, cell cycle and cell expansion in organogenesis in plants. Journal of Plant Research, 2006, 119 (1): 1- 4. | |
Wang C X, Tian M, Zhang Y, et al. Molecular spectrum of somaclonal variation in PLB-regenerated Oncidium revealed by SLAF-seq. Plant Cell Tissue and Organ Culture, 2019b, 137 (3): 541- 552.
doi: 10.1007/s11240-019-01589-4 |
|
Wang Y J, Qiao G R, Xu J, et al. Anatomical characteristics and variation mechanisms on the thick-walled and dwarfed culm of Shidu bamboo (Phyllostachys nidularia f. farcta). Frontiers in Plant Science, 2022, 13, 876658.
doi: 10.3389/fpls.2022.876658 |
|
Wang Y J, Sun X P, Ding Y L, et al. Cellular and molecular characterization of a thick-walled variant reveal a pivotal role of shoot apical meristem in transverse development of bamboo culm. Journal of Experimental Botany, 2019a, 70 (15): 3911- 3926.
doi: 10.1093/jxb/erz201 |
|
Wei Q, Guo L, Jiao C, et al. Characterization of the developmental dynamics of the elongation of a bamboo internode during the fast growth stage. Tree Physiology, 2019, 39 (7): 1201- 1214.
doi: 10.1093/treephys/tpz063 |
|
Wei Q, Jiao C, Ding Y L, et al. Cellular and molecular characterizations of a slow-growth variant provide insights into the fast growth of bamboo. Tree Physiology, 2018, 38 (4): 641- 654.
doi: 10.1093/treephys/tpx129 |
|
Wei Q, Jiao C, Guo L, et al. Exploring key cellular processes and candidate genes regulating the primary thickening growth of Moso underground shoots. New Phytologist, 2017, 214 (1): 81- 96.
doi: 10.1111/nph.14284 |
|
Wu C, Fu Y P, Hu G C, et al. Isolation and characterization of a rice mutant with narrow and rolled leaves. Planta, 2010, 232 (2): 313- 324.
doi: 10.1007/s00425-010-1180-3 |
|
Wu L M, Zhang W J, Ding Y F, et al. Shading contributes to the reduction of stem mechanical strength by decreasing cell wall synthesis in Japonica rice (Oryza sativa L.). Frontiers in Plant Science, 2017, 8, 881.
doi: 10.3389/fpls.2017.00881 |
|
Yoshikawa T, Ito M, Sumikura T, et al. The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin-related processes. Plant Journal, 2014, 78 (6): 927- 936.
doi: 10.1111/tpj.12517 |
|
Zhao D Q, Han C X, Tao J, et al. Effects of inflorescence stem structure and cell wall components on the mechanical strength of inflorescence stem in herbaceous peony. International Journal of Molecular Sciences, 2012, 13 (4): 4993- 5009.
doi: 10.3390/ijms13044993 |
|
Zheng X, Lin S Y, Fu H J, et al. The bamboo flowering cycle sheds light on flowering diversity. Frontiers in Plant Science, 2020, 11, 381.
doi: 10.3389/fpls.2020.00381 |
|
Zhong R Q, Ye Z H. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant and Cell Physiology, 2015, 56 (2): 195- 214.
doi: 10.1093/pcp/pcu140 |
[1] | 蒋康杰,吴文娟,黄丽菁,李家全,黎孔燕. 不同材种木质素影响底物吸附纤维素酶的水解机制[J]. 林业科学, 2024, 60(7): 140-148. |
[2] | 鲁彦,李嘉祺,马雨萱,薛慧婷,李冠华. 植物细胞壁抗降解屏障研究进展与展望[J]. 林业科学, 2024, 60(3): 160-168. |
[3] | 张永跃, 石江涛, 付宗营, 卢芸. 纤维素自愈合水凝胶研究进展[J]. 林业科学, 2024, 60(2): 128-138. |
[4] | 熊怡心,王爽,马星霞,孙志勤. 木质素氧化酶系高产复合真菌培养体系构建[J]. 林业科学, 2024, 60(10): 133-142. |
[5] | 邹春阳,吴文娟. 木质素结构单元对纤维素酶吸附的影响[J]. 林业科学, 2023, 59(6): 141-148. |
[6] | 贾若峰,谷奇,孙一鸣,陆鹏飞,俱世博,乔海莉. 取食洋白蜡和旱柳光肩星天牛幼虫肠道中的细菌多样性差异及关键纤维素降解细菌筛选[J]. 林业科学, 2023, 59(4): 117-131. |
[7] | 代琳心,王智辉,李振瑞,王佳军,刘杏娥,文甲龙,马建锋. 基于TG-FTIR的竹材细胞壁主要组分热解特性[J]. 林业科学, 2023, 59(11): 85-94. |
[8] | 胥雅静,王佳伟,赵岩秋,江成,黄李超,安轶,曾为,张进,卢孟柱. 84K杨PagMSBP1/2a基因对木质素合成的影响[J]. 林业科学, 2022, 58(6): 56-65. |
[9] | 桂有才,左宋林,金凯楠. 自发泡方法制备木质素基高比表面积泡沫炭[J]. 林业科学, 2022, 58(3): 139-148. |
[10] | 卢芸,王慧庆,骆立,陈粤,张治国,马星霞. 古船封护防腐处理技术进展及纳米纤维素应用前景探讨[J]. 林业科学, 2022, 58(2): 182-195. |
[11] | 王海洋,马千里. 马尾松树皮纳米木质纤维素气凝胶吸附剂对Cr3+、Cu2+、Pb2+、Ni2+的吸附性能及机理[J]. 林业科学, 2021, 57(7): 166-174. |
[12] | 贾茹,孙海燕,王玉荣,汪睿,赵荣军,任海青. 杉木无性系新品种‘洋020’和‘洋061’10年生幼龄材微观结构与力学性能的相关性[J]. 林业科学, 2021, 57(5): 165-175. |
[13] | 贺学娇,楚立威,文爽爽,卢孟柱,唐芳. 以玉米为例探究单子叶植物重力响应及维管结构的变化[J]. 林业科学, 2021, 57(2): 93-102. |
[14] | 杨昇,李改云. 金丝楸木材化学成分的不均一性[J]. 林业科学, 2021, 57(1): 169-177. |
[15] | 张文文,俞娟,张丽君,范一民. 纳米纤维素/滤纸浆复合微滤膜的制备与性能[J]. 林业科学, 2020, 56(9): 112-118. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||