林业科学 ›› 2023, Vol. 59 ›› Issue (3): 12-20.doi: 10.11707/j.1001-7488.LYKX20220666
• 前沿与重点:碳达峰、碳中和目标下林业碳汇能力提升 • 上一篇 下一篇
收稿日期:
2022-09-28
出版日期:
2023-03-25
发布日期:
2023-05-27
通讯作者:
朱建华
E-mail:jianzunji2014@163.com;zhucool@caf.ac.cn
基金资助:
Zunji Jian1(),Jianhua Zhu1,2,*(
),Xiaoyi Wang1,Wenfa Xiao1,2
Received:
2022-09-28
Online:
2023-03-25
Published:
2023-05-27
Contact:
Jianhua Zhu
E-mail:jianzunji2014@163.com;zhucool@caf.ac.cn
摘要:
巩固和提升陆地生态系统碳汇能力和潜力是缓解全球CO2浓度上升和气候变暖的重要手段,也是实现我国“碳中和”目标的主要途径之一。为全面了解我国陆地生态系统碳汇功能及科学制定“碳中和”目标实施路径和行动方案,本研究总结我国森林、灌丛、草地、荒漠、湿地和农田生态系统碳源/汇的研究现状和趋势,阐述我国陆地生态系统碳汇提升面临的挑战及解决路径。近40年来,我国陆地生态系统表现为重要的碳汇,碳汇强度时空差异明显:从1980—2000年的0.17 Pg·a?1(1 Pg=1×1015 g)增至2001—2010年的0.20 Pg·a?1,预计2050—2060年将达0.46~0.49 Pg·a?1;整体上呈现东、南部高,西、北部低的空间格局。我国陆地生态系统各子系统碳源/汇特征也表现不同:森林是碳汇的主体,灌丛、湿地和农田表现出碳汇趋势,但草地和荒漠的碳源/汇特征尚不明确。我国陆地生态系统未来碳汇潜力巨大,但仍存在较大不确定性,主要面临3方面问题,即国土生态空间有限、固碳能力亟待提升、政策机制与配套措施不完善。今后,我国陆地生态系统碳汇提升应从以下4个方面开展深入研究:1) 优化生态空间布局,科学实施生态修复;2) 科学认知生态系统碳汇形成机制,提升生态系统固碳能力;3) 加强生态系统碳汇调查、监测、核算以及标准规范能力建设;4) 探索生态碳汇价值实现机制与路径。
中图分类号:
简尊吉,朱建华,王小艺,肖文发. 我国陆地生态系统碳汇的研究进展和提升挑战与路径[J]. 林业科学, 2023, 59(3): 12-20.
Zunji Jian,Jianhua Zhu,Xiaoyi Wang,Wenfa Xiao. Research Progress and the Enhancement Challenges and Pathways of Carbon Sinks in China’s Terrestrial Ecosystems[J]. Scientia Silvae Sinicae, 2023, 59(3): 12-20.
程磊磊, 却晓娥, 杨 柳, 等 中国荒漠生态系统: 功能提升、服务增效. 中国科学院院刊, 2020, 35 (6): 690- 698. | |
Cheng L L, Que X E, Yang L, et al China’s desert ecosystem: functions rising and services enhancing. Bulletin of Chinese Academy of Sciences, 2020, 35 (6): 690- 698. | |
樊 杰, 王红兵, 周道静, 等 优化生态建设布局提升固碳能力的政策途径. 中国科学院院刊, 2022, 37 (4): 459- 468. | |
Fan J, Wang H B, Zhou D J, et al Policy approaches to increase carbon sequestration capacity by optimizing layouts of ecological construction. Bulletin of Chinese Academy of Sciences, 2022, 37 (4): 459- 468. | |
范振林, 宋 猛, 刘智超 发展生态碳汇市场助推实现“碳中和”. 中国国土资源经济, 2021, 34 (12): 12- 21.
doi: 10.19676/j.cnki.1672-6995.000681 |
|
Fan Z L, Song M, Liu Z C Development of ecological carbon sink market to achieve “carbon neutrality”. Natural Resource Economics of China, 2021, 34 (12): 12- 21.
doi: 10.19676/j.cnki.1672-6995.000681 |
|
方精云 碳中和的生态学透视. 植物生态学报, 2021, 45 (11): 1173- 1176.
doi: 10.17521/cjpe.2021.0394 |
|
Fang J Y Ecological perspectives of carbon neutrality. Chinese Journal of Plant Ecology, 2021, 45 (11): 1173- 1176.
doi: 10.17521/cjpe.2021.0394 |
|
冯 源, 肖文发, 黄志霖, 等 未来气候变化情景下三峡库区马尾松林生物量固碳动态与空间分异. 生态学杂志, 2019, 38 (12): 3567- 3576. | |
Feng Y, Xiao W F, Huang Z L, et al Dynamics and spatial differences of biomass carbon sequestration of Pinus massoniana forests in the Three Gorges Reservoir Area under future climate change scenarios . Chinese Journal of Ecology, 2019, 38 (12): 3567- 3576. | |
冯 源, 肖文发, 朱建华, 等 造林对区域森林生态系统碳储量和固碳速率的影响. 生态与农村环境学报, 2020, 36 (3): 281- 290.
doi: 10.19741/j.issn.1673-4831.2019.0254 |
|
Feng Y, Xiao W F, Zhu J H, et al Impacts of afforestation on the carbon stocks and carbon sequestration rates of regional forest ecosystems. Journal of Ecology and Rural Environment, 2020, 36 (3): 281- 290.
doi: 10.19741/j.issn.1673-4831.2019.0254 |
|
冯 源, 朱建华, 肖文发, 等 干扰及林龄影响下迪庆州云杉老龄林生态系统碳储量动态. 生态环境学报, 2017, 26 (9): 1465- 1472. | |
Feng Y, Zhu J H, Xiao W F, et al Disturbances and ageing affected carbon dynamics in old-growth spruce forest in Diqing Prefecture. Ecology and Environmental Sciences, 2017, 26 (9): 1465- 1472. | |
傅伯杰 国土空间生态修复亟待把握的几个要点. 中国科学院院刊, 2021, 36 (1): 64- 69. | |
Fu B J Several key points in terrestrial ecological restoration. Bulletin of Chinese Academy of Sciences, 2021, 36 (1): 64- 69. | |
付 晓, 张煜星, 王雪军 2060年前我国森林生物量碳库及碳汇潜力预测. 林业科学, 2022, 58 (2): 32- 41. | |
Fu X, Zhang Y X, Wang X J Prediction of forest biomass carbon pool and carbon sink potential in China before 2060. Scientia Silvae Sinicae, 2022, 58 (2): 32- 41. | |
高吉喜, 刘晓曼, 王 超, 等 中国重要生态空间生态用地变化与保护成效评估. 地理学报, 2021, 76 (7): 1708- 1721.
doi: 10.11821/dlxb202107010 |
|
Gao J X, Liu X M, Wang C, et al Evaluating changes in ecological land and effect of protecting important ecological spaces in China. Acta Geographica Sinica, 2021, 76 (7): 1708- 1721.
doi: 10.11821/dlxb202107010 |
|
高树琴, 赵 霞, 方精云 我国草地的固碳功能. 中国工程科学, 2016, 18 (1): 73- 79. | |
Gao S Q, Zhao X, Fang J Y Carbon sequestration of grassland in China. Strategic Study of Chinese Academy of Engineering, 2016, 18 (1): 73- 79. | |
国家林业和草原局. 2019. 中国森林资源报告(2014—2018). 北京: 中国林业出版社. | |
National Forestry and Grassland Administration. 2019. Forest resources report of China (2014–—2018). Beijing: China Forestry Publishing House. [in Chinese] | |
何念鹏, 王秋凤 刘颖慧, 等 区域尺度陆地生态系统碳增汇途径及其可行性分析. 地理科学进展, 2011, 30 (7): 788- 794. | |
He N P, Wang Q F, Liu Y H, et al The approaches to enhance carbon sequestration of terrestrial ecosystem at regional scales, and their feasibility. Progress in Geography, 2011, 30 (7): 788- 794. | |
孔凡婕, 应凌霄, 文 雯, 等 基于国土空间生态修复的固碳增汇探讨. 中国国土资源经济, 2021, 34 (12): 70- 76. | |
Kong F J, Ying L X, Wen W, et al Exploring carbon sequestration and sink enhancement based on ecological restoration of territorial space. Natural Resource Economics of China, 2021, 34 (12): 70- 76. | |
李宸宇, 朱建华, 张 峰, 等 基于NbS的北京市乔木林固碳能力分析. 北京林业大学学报, 2021, 43 (6): 13- 22. | |
Li C Y, Zhu J H, Zhang F, et al Carbon sequestration capacity of Beijing arbor forest based on NbS. Journal of Beijing Forestry University, 2021, 43 (6): 13- 22. | |
李 奇, 朱建华, 范立红, 等 西南地区乔木林碳储量及木材生产潜力预测. 生态环境学报, 2018a, 27 (3): 416- 423. | |
Li Q, Zhu J H, Fan L H, et al Prediction of forest carbon storage and timber yield potential in southwestern China. Ecology and Environmental Sciences, 2018a, 27 (3): 416- 423. | |
李 奇, 朱建华, 冯 源, 等 中国主要人工林碳储量与固碳能力. 西北林学院学报, 2016, 31 (4): 1- 6. | |
Li Q, Zhu J H, Feng Y, et al Carbon stocks and carbon sequestration capacity of the main plantations in China. Journal of Northwest Forestry University, 2016, 31 (4): 1- 6. | |
李 奇, 朱建华, 冯 源, 等 中国森林乔木林碳储量及其固碳潜力预测. 气候变化研究进展, 2018b, 14 (3): 287- 294. | |
Li Q, Zhu J H, Feng Y, et al Carbon storage and carbon sequestration potential of the forest in China. Climate Change Research, 2018b, 14 (3): 287- 294. | |
刘伯恩, 宋 猛 碳汇生态产品基本构架及其价值实现. 中国国土资源经济, 2022, 35 (4): 4- 11.
doi: 10.19676/j.cnki.1672-6995.000744 |
|
Liu B E, Song M Basic framework and value realization of carbon sink ecological products. Natural Resource Economics of China, 2022, 35 (4): 4- 11.
doi: 10.19676/j.cnki.1672-6995.000744 |
|
陶 冶, 张元明 中亚干旱荒漠区植被碳储量估算. 干旱区地理, 2013, 36 (4): 615- 622. | |
Tao Y, Zhang Y M Evaluation of vegetation biomass carbon storage in deserts of Central Asia. Arid Land Geography, 2013, 36 (4): 615- 622. | |
田惠玲, 朱建华, 何 潇, 等 基于随机森林模型的东北三省乔木林生物质碳储量预测. 林业科学, 2022, 58 (4): 40- 50.
doi: 10.11707/j.1001-7488.20220405 |
|
Tian H L, Zhu J H, He X, et al Projected biomass carbon stock of arbor forest of three provinces in Northeastern China based on random forest model. Scientia Silvae Sinicae, 2022, 58 (4): 40- 50.
doi: 10.11707/j.1001-7488.20220405 |
|
王穗子, 樊江文, 刘 帅 中国草地碳库估算差异性综合分析. 草地学报, 2017, 25 (5): 905- 913. | |
Wang S Z, Fan J W, Liu S A comprehensive analysis of difference in carbon stock estimation in the grasslands of China. Acta Agrestia Sinica, 2017, 25 (5): 905- 913. | |
于贵瑞, 朱剑兴, 徐 丽, 等 中国生态系统碳汇功能提升的技术途径: 基于自然解决方案. 中国科学院院刊, 2022, 37 (4): 490- 501. | |
Yu G R, Zhu J X, Xu L, et al Technological approaches to enhance ecosystem carbon sink in China: nature-based solutions. Bulletin of Chinese Academy of Sciences, 2022, 37 (4): 490- 501. | |
张会儒, 雷相东, 张春雨, 等 森林质量评价及精准提升理论与技术研究. 北京林业大学学报, 2019, 41 (5): 1- 18. | |
Zhang H R, Lei X D, Zhang C Y, et al Research on theory and technology of forest quality evaluation and precision improvement. Journal of Beijing Forestry University, 2019, 41 (5): 1- 18. | |
张小全, 谢 茜, 曾 楠 基于自然的气候变化解决方案. 气候变化研究进展, 2020, 16 (3): 336- 344. | |
Zhang X Q, Xie X, Zeng N Nature-based Solutions to address climate change. Climate Change Research, 2020, 16 (3): 336- 344. | |
张逸如, 刘晓彤, 高文强, 等 天然林保护工程区近20年森林植被碳储量动态及碳汇(源)特征. 生态学报, 2021, 41 (13): 5093- 5105. | |
Zhang Y R, Liu X T, Gao W Q, et al Dynamic changes of forest vegetation carbon storage and the characteristics of carbo sink (source) in the natural forest protection project region for the past 20 years. Acta Ecologica Sinica, 2021, 41 (13): 5093- 5105. | |
张煜星, 王雪军, 蒲 莹, 等 1949–2018年中国森林资源碳储量变化研究. 北京林业大学学报, 2021, 43 (5): 1- 14. | |
Zhang Y X, Wang X J, Pu Y, et al Changes in forest resource carbon storage in China between 1949 and 2018. Journal of Beijing Forestry University, 2021, 43 (5): 1- 14. | |
朱爱琴, 顾 蕾, 朱玮强, 等 外生激励和价值认同对农户持续参与森林碳汇项目意愿的影响. 林业科学, 2021, 57 (8): 176- 188.
doi: 10.11707/j.1001-7488.20210818 |
|
Zhu A Q, Gu L, Zhu W Q, et al Impact of exogenous incentives and value recognition on farmers’ willingness of continuous participation in forest carbon sequestration project. Scientia Silvae Sinicae, 2021, 57 (8): 176- 188.
doi: 10.11707/j.1001-7488.20210818 |
|
朱建华, 田 宇, 李 奇, 等. 2023. 中国森林生态系统碳汇现状与潜力. 生态学报, doi: 10.5846/stxb202205201425. | |
Zhu J H, Tian Y, Li Q, et al. 2023. The current and potential carbon sink in forest ecosystem in China. Acta Ecologica Sinica, doi: 10.5846/stxb202205201425 [in Chinese] | |
邹玉友, 李金秋, 齐英南, 等 碳交易背景下控排企业林业碳汇需求意愿及其影响因素——基于计划行为理论的探讨. 林业科学, 2020, 56 (8): 162- 172.
doi: 10.11707/j.1001-7488.20200818 |
|
Zou Y Y, Li J Q, Qi Y N, et al Demand willingness and influencing factors of emission control enterprises for forest carbon sink in the context of carbon trade: based on the theory of planned behavior. Scientia Silvae Sinicae, 2020, 56 (8): 162- 172.
doi: 10.11707/j.1001-7488.20200818 |
|
Bai Y F, Cotrufo M F Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science, 2022, 377 (6606): 603- 608.
doi: 10.1126/science.abo2380 |
|
Cai W X, He N P, Li M X, et al Carbon sequestration of Chinese forests from 2010 to 2060: spatiotemporal dynamics and its regulatory strategies. Science Bulletin, 2022, 67 (8): 836- 843.
doi: 10.1016/j.scib.2021.12.012 |
|
Chuai X W, Qi X X, Zhang X Y, et al Land degradation monitoring using terrestrial ecosystem carbon sinks/sources and their response to climate change in China. Land Degradation & Development, 2018, 29 (10): 3489- 3502. | |
Fang J Y, Chen A P, Peng C H, et al Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001, 292 (5525): 2320- 2322.
doi: 10.1126/science.1058629 |
|
Fang J Y, Yang Y H, Ma W H, et al Ecosystem carbon stocks and their changes in China’s grasslands. Science China:Life Sciences, 2010, 53 (7): 757- 765.
doi: 10.1007/s11427-010-4029-x |
|
Fang J Y, Yu G R, Liu L L, et al Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (16): 4015- 4020.
doi: 10.1073/pnas.1700304115 |
|
Fargione J E, Bassett S, Boucher T, et al Natural climate solutions for the United States. Science Advances, 2018, 4 (11): 1869.
doi: 10.1126/sciadv.aat1869 |
|
FAO. 2020. Global forest resources assessment 2020 – key findings. Rome. [2022-09-20] https://doi.org/10.4060/ca8753en. | |
Friedlingstein P, Jones M W, O'Sullivan M, et al Global Carbon Budget 2021. Earth System Science Data, 2022, 14 (4): 1917- 2005.
doi: 10.5194/essd-14-1917-2022 |
|
Guo Z D, Hu H F, Li P, et al Spatio-temporal changes in biomass carbon sinks in China’s forests from 1977 to 2008. Science China:Life Sciences, 2013, 56 (7): 661- 671.
doi: 10.1007/s11427-013-4492-2 |
|
Harris N L, Gibbs D A, Baccini A, et al Global maps of twenty-first century forest carbon fluxes. Nature Climate Change, 2021, 11 (3): 234- 240.
doi: 10.1038/s41558-020-00976-6 |
|
He N P, Wen D, Zhu J X, et al Vegetation carbon sequestration in Chinese forests from 2010 to 2050. Global Change Biology, 2017, 23 (4): 1575- 1584.
doi: 10.1111/gcb.13479 |
|
Hu H F, Wang S P, Guo Z D, et al The stage-classified matrix models project a significant increase in biomass carbon stocks in China’s forests between 2005 and 2050. Scientific Reports, 2015, 5, 11203.
doi: 10.1038/srep11203 |
|
Huang Y, Sun W J, Qin Z C, et al The role of China’s terrestrial carbon sequestration 2010–2060 in offsetting energy-related CO2 emissions . National Science Review, 2022, 9 (8): nwac057.
doi: 10.1093/nsr/nwac057 |
|
Jian Z J, Ni Y Y, Lei L, et al Phosphorus is the key soil indicator controlling productivity in planted masson pine forests across subtropical China. Science of the Total Environment, 2022, 822, 153525.
doi: 10.1016/j.scitotenv.2022.153525 |
|
Li K R, Wang S Q, Cao M K Vegetation and soil carbon storage in China. Science China:Earth Sciences, 2004, 47 (1): 49- 57. | |
Li P, Zhu J, Hu H, et al The relative contributions of forest growth and areal expansion to forest biomass carbon. Biogeosciences, 2016, 13 (2): 375- 388.
doi: 10.5194/bg-13-375-2016 |
|
Li Y, Zhang C Q, Wang N A, et al Substantial inorganic carbon sink in closed drainage basins globally. Nature Geoscience, 2017, 10 (7): 501- 506.
doi: 10.1038/ngeo2972 |
|
Lu F, Hu H F, Sun W J, et al Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (16): 4039- 4044.
doi: 10.1073/pnas.1700294115 |
|
Lu N, Tian H Q, Fu B J, et al Biophysical and economic constraints on China’s natural climate solutions. Nature Climate Change, 2022, 12, 847- 853.
doi: 10.1038/s41558-022-01432-3 |
|
Luo Y Q, Weng E S Dynamic disequilibrium of the terrestrial carbon cycle under global change. Trends in Ecology & Evolution, 2011, 26 (2): 96- 104. | |
Pan G X, Xu X W, Smith P, et al. 2010. An increase in topsoil SOC stock of China’s croplands between 1985 and 2006 revealed by soil monitoring. Agriculture, Ecosystems & Environment, 136(1): 133–138. | |
Piao S L, Fang J Y, Ciais P, et al The carbon balance of terrestrial ecosystems in China. Nature, 2009, 458 (7241): 1009- 1013.
doi: 10.1038/nature07944 |
|
Piao S L, He Y, Wang X H, et al Estimation of China’s terrestrial ecosystem carbon sink: methods, progress and prospects. Science China:Earth Sciences, 2022, 65 (4): 641- 651.
doi: 10.1007/s11430-021-9892-6 |
|
Powlson D S, Stirling C M, Jat M L, et al Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 2014, 4 (8): 678- 683.
doi: 10.1038/nclimate2292 |
|
Qiu Z X, Feng Z K, Song Y N, et al Carbon sequestration potential of forest vegetation in China from 2003 to 2050: predicting forest vegetation growth based on climate and the environment. Journal of Cleaner Production, 2020, 252, 119715.
doi: 10.1016/j.jclepro.2019.119715 |
|
Schlesinger W H An evaluation of abiotic carbon sinks in deserts. Global Change Biology, 2017, 23 (1): 25- 27.
doi: 10.1111/gcb.13336 |
|
Schulze E D, Wirth C, Heimann M Managing forests after Kyoto. Science, 2000, 289 (5487): 2058- 2059.
doi: 10.1126/science.289.5487.2058 |
|
Song J, Wan S Q, Peng S S, et al The carbon sequestration potential of China’s grasslands. Ecosphere, 2018, 9 (10): e02452.
doi: 10.1002/ecs2.2452 |
|
Sun W J, Huang Y, Zhang W, et al Carbon sequestration and its potential in agricultural soils of China. Global Biogeochemical Cycles, 2010, 24 (3): GB3001. | |
Tang H Y, Liu Y, Li X M, et al Carbon sequestration of cropland and paddy soils in China: potential, driving factors, and mechanisms. Greenhouse Gases:Science & Technology, 2019, 9 (5): 872- 885. | |
Tang X L, Zhao X, Bai Y F, et al Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (16): 4021- 4026.
doi: 10.1073/pnas.1700291115 |
|
Tian H L, Zhu J H, He X, et al Using machine learning algorithms to estimate stand volume growth of Larix and Quercus forests based on national-scale Forest Inventory data in China . Forest Ecosystems, 2022b, 9, 100037.
doi: 10.1016/j.fecs.2022.100037 |
|
Tian H L, Zhu J H, Jian Z J, et al The carbon neutral potential of forests in the Yangtze River Economic Belt of China. Forests, 2022a, 13, 721.
doi: 10.3390/f13050721 |
|
Tian H Q, Melillo J, Lu C Q, et al China’s terrestrial carbon balance: Contributions from multiple global change factors. Global Biogeochemical Cycles, 2011, 25 (1): GB1007. | |
Wang L X, Gao J X, Shen W M, et al Carbon storage in vegetation and soil in Chinese ecosystems estimated by carbon transfer rate method. Ecosphere, 2021a, 12 (1): e03341. | |
Wang S, Chen J M, Ju W M, et al Carbon sinks and sources in China’s forests during 1901–2001. Journal of Environmental Management, 2007, 85 (3): 524- 537.
doi: 10.1016/j.jenvman.2006.09.019 |
|
Wang S, Xu L, Zhuang Q L, et al Investigating the spatio-temporal variability of soil organic carbon stocks in different ecosystems of China. Science of the Total Environment, 2021b, 758, 143644.
doi: 10.1016/j.scitotenv.2020.143644 |
|
Wang S Q, Tian H Q, Liu J Y, et al Pattern and change of soil organic carbon storage in China: 1960s-1980s. Tellus Series B:Chemical and Physical Meteorology, 2003, 55 (2): 416- 427. | |
Xiao D R, Deng L, Kim D G, et al Carbon budgets of wetland ecosystems in China. Global Change Biology, 2019, 25 (6): 2061- 2076.
doi: 10.1111/gcb.14621 |
|
Xie J, Zha T S, Jia X, et al Irregular precipitation events in control of seasonal variations in CO2 exchange in a cold desert-shrub ecosystem in northwest China . Journal of Arid Environments, 2015, 120, 33- 41.
doi: 10.1016/j.jaridenv.2015.04.009 |
|
Xu B, Guo Z D, Piao S L, et al Biomass carbon stocks in China’s forests between 2000 and 2050: a prediction based on forest biomass-age relationships. Science China:Life Sciences, 2010, 53 (7): 776- 783.
doi: 10.1007/s11427-010-4030-4 |
|
Xu L, Yu G Y, He N P, et al Carbon storage in China’s terrestrial ecosystems: a synthesis. Scientific Reports, 2018, 8 (1): 2806.
doi: 10.1038/s41598-018-20764-9 |
|
Yang F, Huang J P, Zhou C L, et al Taklimakan desert carbon-sink decreased under climate change. Science Bulletin, 2020, 65 (6): 431- 433.
doi: 10.1016/j.scib.2019.12.022 |
|
Yang Y H, Shi Y, Sun W J, et al Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China:Life Sciences, 2022, 65 (5): 861- 895.
doi: 10.1007/s11427-021-2045-5 |
|
Yao Y T, Piao S L, Wang T. 2018. Future biomass carbon sequestration capacity of Chinese forests. Science Bulletin, 63(17): 1108–1117. | |
Yu G R, Li X R, Wang Q F, et al Carbon storage and its spatial pattern of terrestrial ecosystem in China. Journal of Resources and Ecology, 2010, 1 (2): 97- 109. | |
Yu G R, Zhu X J, Fu Y L, et al Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Global Change Biology, 2013a, 19 (3): 798- 810.
doi: 10.1111/gcb.12079 |
|
Yu Y Q, Huang Y, Zhang W Modeling soil organic carbon change in croplands of China, 1980–2009. Global and Planetary Change, 2012, 82, 115- 128. | |
Yu Y Q, Huang Y, Zhang W. 2013b. Projected changes in soil organic carbon stocks of China’s croplands under different agricultural managements, 2011–2050. Agriculture, Ecosystems & Environment, 178: 109–120. | |
Zhang L, Sun P S, Huettmann F, et al. 2022. Where should China practice forestry in a warming world? Global Change Biology, 28(7): 2461–2475. | |
Zhang L, Zhou G S, Ji Y H, et al Spatiotemporal dynamic simulation of grassland carbon storage in China. Science China:Earth Sciences, 2016, 59 (10): 1946- 1958.
doi: 10.1007/s11430-015-5599-4 |
|
Zhang X Q, Xu D Y Potential carbon sequestration in China’s forests. Environmental Science & Policy, 2003, 6 (5): 421- 432. | |
Zheng Y M, Niu Z G, Gong P, et al Preliminary estimation of the organic carbon pool in China’s wetlands. Chinese Science Bulletin, 2013, 58 (6): 662- 670.
doi: 10.1007/s11434-012-5529-9 |
[1] | 窦亚权,杨琛,赵晓迪,王怀毅,李娅,何友均. 森林生态产品价值实现的理论与路径选择[J]. 林业科学, 2022, 58(7): 1-11. |
[2] | 程瑞梅, 王娜, 肖文发, 沈雅飞, 刘泽彬. 陆地生态系统生态化学计量学研究进展[J]. 林业科学, 2018, 54(7): 130-136. |
[3] | 罗攀柱;李际平;陈元红. 集体林区林地使用权流转模式、动机与路径选择——基于湖南省一个县的实证调查[J]. 林业科学, 2010, 46(9): 158-163. |
[4] | 吴伟光;李怒云. 我国林业生物柴油的发展目标、现状及面临的挑战[J]. 林业科学, 2009, 12(11): 141-147. |
[5] | 邱荣祖. 基于GIS的木材运输计划决策支持系统[J]. 林业科学, 2002, 38(1): 116-121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||