林业科学 ›› 2020, Vol. 56 ›› Issue (3): 117-126.doi: 10.11707/j.1001-7488.20200313
朱万泽
收稿日期:
2018-06-13
出版日期:
2020-03-01
发布日期:
2020-04-08
基金资助:
Wanze Zhu
Received:
2018-06-13
Online:
2020-03-01
Published:
2020-04-08
摘要:
成熟森林在在维持生物多样性和长期碳平衡中发挥着重要作用,近十多年来,全球掀起了成熟森林固碳研究热潮。理解成熟森林碳储存和碳源/汇动态,有助于评估和预测成熟森林在区域碳循环中的作用,对于估计森林碳减排范围、发展近自然林管理策略亦十分重要。本研究在介绍成熟森林林龄阈值的基础上,分析成熟森林碳储量与碳分配以及自然成熟森林生产力及其影响因素,综述成熟森林固碳的3个假说:1)碳中性假说随着森林演替林龄增加,森林生产力达到最大值后开始下降,到成熟森林阶段,森林碳吸收与生态系统呼吸达到平衡,因而处于碳中性状态;2)碳汇假说许多热带、亚热带以及北半球的北方和温带成熟森林可持续固碳几百年,成熟森林为全球碳汇,成熟森林固碳主要集中在土壤中,可能与气候变化引起森林生产力增加、植被碳流向土壤碳的比率随森林成熟度增加而增加以及气温上升和大气氮沉降等降低土壤异养呼吸有关;3)碳源假说少数研究报道认为成熟森林为净碳源,与成熟森林地被物、枯死木及土壤有机碳的周转加快有关。越来越多研究证实成熟森林能持续固碳,支持成熟森林碳汇假说。建议今后:1)加强成熟森林碳通量观测研究;2)从生态系统呼吸及其构成角度探讨成熟森林碳源/汇过程及其形成机制研究;3)加强全球变化对成熟森林固碳的影响研究。
中图分类号:
朱万泽. 成熟森林固碳研究进展[J]. 林业科学, 2020, 56(3): 117-126.
Wanze Zhu. Advances in the Carbon Sequestration of Mature Forests[J]. Scientia Silvae Sinicae, 2020, 56(3): 117-126.
刘迎春, 于贵瑞, 王秋凤, 等. 基于成熟林生物量整合分析中国森林碳容量和固碳潜力. 中国科学:生命科学, 2015. 45 (2): 210- 222. | |
Liu Y C , Yu G R , Wang Q F , et al. Carbon carry capacity and carbon sequestration potential in China based on an integrated analysis of mature forest biomass. Science China:Life Sciences, 2015. 45 (2): 210- 222. | |
蒲莹. 我国天然林现状与变化分析. 林业资源管理, 2013. (3): 119- 122.
doi: 10.3969/j.issn.1002-6622.2013.03.025 |
|
Pu Y . An analysis on natural forest status and changes in China. Forest Resources Management, 2013. (3): 119- 122.
doi: 10.3969/j.issn.1002-6622.2013.03.025 |
|
徐冰, 郭兆迪, 朴世龙, 等. 2000-2050年中国森林生物量碳库:基于生物量密度与林龄关系的预测. 中国科学:生命科学, 2010. 40 (7): 587- 594. | |
Xu B , Guo Z D , Piao S L , et al. Biomass carbon stocks in China's forests between 2000 and 2050:a prediction based on forest biomass-age relationships. Science China:Life Sciences, 2010. 40 (7): 587- 594. | |
于贵瑞, 张雷明, 孙晓敏. 中国陆地生态系统通量观测研究网络(ChinaFLUX)的主要进展及发展展望. 地理科学进展, 2014. 33 (7): 903- 917. | |
Yu G R , Zhang L M , Sun X M . Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX). Progress in Geography, 2014. 33 (7): 903- 917. | |
周蕾, 王绍强, 周涛, 等. 1901-2010年中国森林碳收支动态:林龄的重要性. 科学通报, 2016. 61 (18): 2064- 2073. | |
Zhou L , Wang S Q , Zhou T , et al. Carbon dynamics of China's forests during 1901-2010:the importance of forest age. Chinese Science Bulletin, 2016. 61 (18): 2064- 2073. | |
Acker S A , Halpern C B , Harmon M E , et al. Trends in bole biomass accumulation, net primary production and tree mortality in Pseudotsuga menziesii forests of contrasting age. Tree Physiology, 2002. 22 (2/3): 213- 217. | |
Amiro B D , Barr A G , Black T A , et al. Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada. Agricultural and Forest Meteorology, 2006. 136 (3/4): 237- 251. | |
Arain M A , Restrepo-Coupe N . Net ecosystem production in a temperate pine plantation in southeastern Canada. Agricultural and Forest Meteorology, 2005. 128 (3): 223- 241. | |
Baker T R , Phillips O L , Malhi Y , et al. Increasing biomass in Amazonian forest plots. Philosophical Transactions of the Royal Society B:Biological Sciences, 2004. 359 (1443): 353- 365.
doi: 10.1098/rstb.2003.1422 |
|
Binkley D , Stape J L , Takahashi E N , et al. Tree-girdling to separate root and heterotrophic respiration in two Eucalyptus stands in Brazil. Oecologia, 2006. 148 (3): 447- 454.
doi: 10.1007/s00442-006-0383-6 |
|
Bisbing S M , Alaback P B , DeLuca T H . Carbon storage in old-growth and second growth fire-dependent western larch (Larix occidentalis Nutt.) forests of the Inland Northwest, USA. Forest Ecology and Management, 2010. 259 (5): 1041- 1049.
doi: 10.1016/j.foreco.2009.12.018 |
|
Brienen R J W , Phillips O L , Feldpausch T R , et al. Long-term decline of the Amazon carbon sink. Nature, 2015. 519 (7543): 344- 348.
doi: 10.1038/nature14283 |
|
Bugmann H , Bigler C . Will the CO2 fertilization effect in forests be offset by reduced tree longevity?. Oecologia, 2011. 165 (2): 533- 544.
doi: 10.1007/s00442-010-1837-4 |
|
Burrascano S , Keeton W S , Sabatini F M , et al. Commonality and variability in the structural attributes of moist temperate old-growth forests:a global review. Forest Ecology and Management, 2013. 291, 458- 479.
doi: 10.1016/j.foreco.2012.11.020 |
|
Carey E V , Sala A , Keane R , et al. Are old forests underestimated as global carbon sinks?. Global Change Biology, 2001. 7 (4): 339- 344.
doi: 10.1046/j.1365-2486.2001.00418.x |
|
Carswell F E , Costa A L , Palheta P , et al. Seasonality in CO2 and H2O flux at an eastern Amazonian rain forest. Journal of Geophysical Research, 2002. 107 (D20): 8076.
doi: 10.1029/2000JD000284 |
|
Cavard X , Bergeron Y , Chen H Y , et al. Effect of forest canopy composition on soil nutrients and dynamics of the understorey:mixed canopies serve neither vascular nor bryophyte strata. Journal of Vegetation Science, 2011. 22 (6): 1105- 1119.
doi: 10.1111/j.1654-1103.2011.01311.x |
|
Chen G S , Yang Y S , Guo J F. , et al. Relationships between carbon allocation and partitioning of soil respiration across world mature forests. Plant Ecology, 2011. 212, 195- 206.
doi: 10.1007/s11258-010-9814-x |
|
Chen H Y H , Popadiouk R V . Dynamics of north American boreal mixedwoods. Environmental Reviews, 2002. 10 (3): 137- 166.
doi: 10.1139/a02-007 |
|
Ciais P , Tans P P , Trolier M , et al. A large northern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science, 1995. 269 (5227): 1098- 1102.
doi: 10.1126/science.269.5227.1098 |
|
Cusack D F , Karpman J , Ashdown D , et al. Global change effects on humid tropical forests:evidence for biogeochemical and biodiversity shifts at an ecosystem scale. Reviews of Geophysics, 2016. 54 (3): 523- 610.
doi: 10.1002/2015RG000510 |
|
da Costa A C L , Metcalfe D B , Doughty C E , et al. Ecosystem respiration and net primary productivity after 8-10 years of experimental through-fall reduction in an eastern Amazon forest. Plant Ecology & Diversity, 2014. 7 (1/2): 7- 24. | |
DeLucia E H , Drake J E , Thomas R B , et al. Forest carbon use efficiency:is respiration a constant fraction of gross primary production?. Global Change Biology, 2007. 13 (6): 1157- 1167.
doi: 10.1111/j.1365-2486.2007.01365.x |
|
Desai A R , Bolstad P V , Cook B D , et al. Comparing net ecosystem exchange of carbon dioxide between an old-growth and mature forest in the upper midwest, USA. Agricultural and Forest Meteorology, 2005. 128 (1): 33- 55. | |
Drake J E , Davis S C , Raetz L M , et al. Mechanisms of age-related changes in forest production:the influence of physiological and successional changes. Global Change Biology, 2011. 17 (4): 1522- 1535.
doi: 10.1111/j.1365-2486.2010.02342.x |
|
Drury W H , Nisbet I C T . Succession. Journal of the Arnold Arboretum, 1973. 54 (3): 331- 68. | |
Fan S M , Wofsy S C , Bakwin P S , et al. Atmosphere-biosphere exchange of CO2 and O3 in the central Amazon forest. Journal of Geophysical Research, 1990. 95 (D10): 16851- 16864.
doi: 10.1029/JD095iD10p16851 |
|
Franklin J F , Spies T A , Van Pelt R , et al. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir as an example. Forest Ecology and Management, 2002. 155 (1): 399- 423. | |
Frelich L . Forest dynamics and disturbance regimes:studies from temperate evergreen-deciduous forests. Cambridge, UK: Cambridge University Press. 2002. | |
Goulden M L , McMillan A M S , Winston G C , et al. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Global Change Biology, 2011. 17 (2): 855- 871.
doi: 10.1111/j.1365-2486.2010.02274.x |
|
Gower S T , Krankina O , Olson R J , et al. Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecological Applications, 2001. 11 (5): 1395- 411.
doi: 10.1890/1051-0761(2001)011[1395:NPPACA]2.0.CO;2 |
|
Gower S T , McMurtrie R E , Murty D . Aboveground net primary production decline with stand age:potential causes. Trends in Ecology & Evolution, 1996. 11 (9): 378- 382. | |
Grace J , Lloyd J , McIntyre J , et al. Carbon dioxide uptake by an undisturbed tropical rain forest in Southwest Amazonia, 1992 to 1993. Science, 1995a. 270 (5237): 778- 780.
doi: 10.1126/science.270.5237.778 |
|
Grace J , Lloyd J , Mcintyre J , et al. Fluxes of carbon dioxide and water vapour over an undisturbed tropical forest in south-west Amazonia. Global Change Biology, 1995b. 1 (1): 1- 12. | |
Grace J , Malhi Y , Lloyd J , et al. The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest. Global Change Biology, 1996. 2 (3): 209- 217.
doi: 10.1111/j.1365-2486.1996.tb00073.x |
|
Guan D X , Wu J B , Zhao X S , et al. CO2 fluxes over an old, temperate mixed forest in northeastern China. Agricultural and Forest Meteorology, 2006. 137 (3): 138- 149. | |
Gunn J S , Ducey M J , Whitman A A . Late-successional and old-growth forest carbon temporal dynamics in the Northern Forest (Northeastern USA). Forest Ecology and Management, 2014. 312 (1): 40- 46. | |
Hadden D , Grelle A . Changing temperature response of respiration turns boreal forest from carbon sink into carbon source. Agricultural and Forest Meteorology, 2016. 223 (1): 30- 38. | |
Hardiman B S , Gough C M , Halperin A , et al. Maintaining high rates of carbon storage in old forests:a mechanism linking canopy structure to forest function. Forest Ecology and Management, 2013. 298 (3): 111- 119. | |
Harmon M E , Bible K , Ryan M G , et al. Production, respiration, and overall carbon balance in an old growth Pseudotsuga-Tsuga forest ecosystem. Ecosystems, 2004. 7 (5): 498- 512. | |
Harmon M E , Ferrell W K , Franklin J F . Effects on carbon storage of conversion of old-growth forests to young forests. Science, 1990. 247 (4943): 699- 702.
doi: 10.1126/science.247.4943.699 |
|
He L , Chen J M , Pan Y , et al. Relationships between net primary productivity and forest stand age in U. S. forests. Global Biogeochemical Cycles, 2012. 26 (3): GB3009. | |
Helama S , Laanelaid A , Raisio J , et al. Mortality of urban pines in Helsinki explored using tree rings and climate records. Trees, 2012. 26 (3): 353- 362. | |
Hilmo O , Holien H , Hytteborn H , et al. Richness of epiphytic lichens in differently aged Picea abies plantations situated in the oceanic region of Central Norway. Lichenologist, 2009. 41 (1): 97- 108.
doi: 10.1017/S0024282909007865 |
|
Hirata R , Saigusa N , Yamamoto S , et al. Spatial distribution of carbon balance in forest ecosystems across East Asia. Agricultural and Forest Meteorology, 2008. 148 (5): 761- 775.
doi: 10.1016/j.agrformet.2007.11.016 |
|
Hollinger D Y , Kelliher F M , Byers J N , et al. Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere. Ecology, 1994. 75 (1): 134- 150. | |
Hoover C M , Leak W B , Keel B G . Benchmark carbon stocks from old-growth forests in northern New England, USA. Forest Ecology and Management, 2012. 266, 108- 114.
doi: 10.1016/j.foreco.2011.11.010 |
|
Host G E , Pregitzer K S , Ramm C W , et al. Variation in overstory biomass among glacial landforms and ecological land units in northwestern Lower Michigan. Canadian Journal of Forest Research, 1988. 18 (6): 659- 68.
doi: 10.1139/x88-101 |
|
Hudiburg T , Law B , Turner D P , et al. Carbon dynamics of Oregon and northern California forests and potential land-based carbon storage. Ecological Applications, 2009. 19 (1): 163- 180.
doi: 10.1890/07-2006.1 |
|
Hunt E R , Lavigne M B , Franklin S E . Factors controlling the decline of net primary production with stand age for balsam fir in Newfoundland assessed using an ecosystem simulation model. Ecological Modelling, 1999. 122 (3): 151- 164.
doi: 10.1016/S0304-3800(99)00135-0 |
|
Hutyra L R , Munger J W , Saleska S R , et al. Seasonal controls on the exchange of carbon and water in an Amazonian rain forest. Journal of Geophysical Research, 2007. 112 (G3): 488- 497. | |
Jacob M , Bade C , Calvete H , et al. Significance of over-mature and decaying trees for carbon stocks in a central European natural spruce forest. Ecosystems, 2013. 16 (2): 336- 346.
doi: 10.1007/s10021-012-9617-0 |
|
Janisch J E , Harmon M E . Successional changes in live and dead wood carbon stores:implications for net ecosystem productivity. Tree Physiology, 2002. 22 (2-3): 77- 89.
doi: 10.1093/treephys/22.2-3.77 |
|
Jarvis P G , Morison J I L , Chaloner W G , et al. Atmospheric carbon dioxide and forests. Philosophical Transactions of the Royal Society B Biological Sciences, 1989. 324 (1223): 369- 392. | |
Kashian D M , Romme W H , Tinker D B , et al. Post-fire changes in forest carbon storage over a 300-year chronosequence of Pinus contorta-dominated forest. Ecological Monographs, 2013. 83 (1): 49- 66.
doi: 10.1890/11-1454.1 |
|
Kato T , Tang Y . Spatial variability and major controlling factors of CO2 sink strength in Asian terrestrial ecosystems:evidence from eddy covariance data. Global Change Biology, 2008. 14 (10): 2333- 2348.
doi: 10.1111/j.1365-2486.2008.01646.x |
|
Keeton W , Whitman A , McGee G C , et al. Late-successional biomass development in northern hardwood-conifer forests of the northeastern United States. Forest Science, 2011. 57 (6): 489- 505. | |
Keith H , Mackey B G , Lindenmayer D B . Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106 (28): 11635- 11640.
doi: 10.1073/pnas.0901970106 |
|
Kira T , Shidei T . Primary production and turnover of organic matter in different forest ecosystems of the western Pacific. Japanese Journal of Ecology, 1967. 17 (2): 70- 87. | |
Kneeshaw D , Gauthier S . Old growth in the boreal forest:a dynamic perspective at the stand and landscape level. Environmental Reviews, 2003. 11 (1): S99- S114. | |
Knohl A , Schulze E D , Kolle O , et al. Large carbon uptake by an unmanaged 250-year-old deciduous forest in central Germany. Agricultural and Forest Meteorology, 2003. 118 (3/4): 151- 167. | |
Körner C , Asshoff R , Bignucolo O , et al. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science, 2005. 309 (5739): 1360- 1362.
doi: 10.1126/science.1113977 |
|
Kosugi Y , Takanashi S , Ohkubo S , et al. CO2 exchange of a tropical rainforest at Pasoh in Peninsular Malaysia. Agricultural and Forest Meteorology, 2008. 148 (3): 439- 452.
doi: 10.1016/j.agrformet.2007.10.007 |
|
Law B E , Goldstein A H , Anthoni P M , et al. Carbon dioxide and water vapor exchange by young and old ponderosa pine ecosystem during a dry summer. Tree Physiology, 2001. 21 (5): 299- 308.
doi: 10.1093/treephys/21.5.299 |
|
Law B E , Sun O J , Campbell J , et al. Changes in carbon storage and fluxes in a chronosequence of ponderosa pine. Global Change Biology, 2003. 9 (4): 510- 524.
doi: 10.1046/j.1365-2486.2003.00624.x |
|
Lewis S L , Lopez-Gonzalez G , Sonké B , et al. Increasing carbon storage in intact African tropical forests. Nature, 2009. 457 (7232): 1003- 1007.
doi: 10.1038/nature07771 |
|
Lewis S L , Phillips O L , Baker T R , et al. Concerted changes in tropical forest structure and dynamics:evidence from 50 South American long-term plots. Philosophical Transactions of the Royal Society B Biological Sciences, 2004. 359 (1443): 421- 436.
doi: 10.1098/rstb.2003.1431 |
|
Lieth H . Primary production:terrestrial ecosystems. Human Ecology, 1973. 1 (4): 303- 332.
doi: 10.1007/BF01536729 |
|
Lindroth A , Grelle A , Morén A S . Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Global Change Biology, 1998. 4 (4): 443- 450.
doi: 10.1046/j.1365-2486.1998.00165.x |
|
Liu Y C , Yu G R , Wang Q F , et al. How temperature, precipitation and stand age control the biomass carbon density of global matureforests. Global Ecology & Biogeography, 2014. 23 (3): 323- 333. | |
Luyssaert S , Schulze E D , Borner A , et al. Old-growth forests as global carbon sinks. Nature, 2008. 455 (7210): 213- 215.
doi: 10.1038/nature07276 |
|
Maier C A , Albaugh T J , Leeallen H , et al. Respiratory carbon use and carbon storage in mid-rotation loblolly pine (Pinus taeda L.) plantations:the effect of site resources on the stand carbon balance. Global Change Biology, 2004. 10 (8): 1335- 1350.
doi: 10.1111/j.1529-8817.2003.00809.x |
|
Mäkelä A , Valentine H T . The ratio of NPP to GPP:evidence of change over the course of stand development. Tree Physiology, 2001. 21 (14): 1015- 1030.
doi: 10.1093/treephys/21.14.1015 |
|
Malhi Y , Baldocchi D D , Jarvis P G . The carbon balance of tropical, temperate and boreal forests. Plant, Cell & Environment, 1999. 22 (6): 715- 740. | |
Malhi Y , Doughty C E , Goldsmith G R , et al. The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests. Global Change Biology, 2015. 21 (6): 2283- 2295.
doi: 10.1111/gcb.12859 |
|
Malhi Y , Farfán Amézquita F , Doughty C E , et al. The productivity, metabolism and carbon cycle of two lowland tropical forest plots in south-western Amazonia, Peru. Plant Ecology and Diversity, 2014. 7 (1/2): 85- 105. | |
Malhi Y , Nobre A D , Grace J , et al. Carbon dioxide transfer over a Central Amazonian rain forest. Journal of Geophysical Research, 1998. 103 (D24): 31593- 31612.
doi: 10.1029/98JD02647 |
|
Mosseler A , Lynds J A , Major J E . Old-growth forests of the Acadian Forest Region. Environmental Reviews, 2003. 11 (S1): S47- S77.
doi: 10.1139/a03-015 |
|
Nitsch P , Kaupenjohann M , Wulf M . Forest continuity, soil depth and tree species are important parameters for SOC stocks in an old forest (Templiner Buchheide, northeast Germany). Geoderma, 2018. 310, 65- 76.
doi: 10.1016/j.geoderma.2017.08.041 |
|
Ódor P , Heilmann-Clausen J , Christensen M , et al. Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe. Biological Conservation, 2006. 131 (1): 58- 71.
doi: 10.1016/j.biocon.2006.02.004 |
|
Odum E P . The strategy of ecosystem development. Science, 1969. 164 (3877): 262- 270.
doi: 10.1126/science.164.3877.262 |
|
Ogawa K . Theoretical analysis of change in forest carbon use efficiency with stand development:a case study on Hinoki Cypress (Chamaecyparis obtusa(Sieb. et Zucc.) Endl.) plantation from the seedling stage. Ecological Modelling, 2011. 222 (3): 437- 441.
doi: 10.1016/j.ecolmodel.2010.10.022 |
|
Paré D , Bergeron Y . Above-ground biomass accumulation along a 230-year chronosequence in the southern portion of the Canadian boreal forest. Journal of Ecology, 1995. 83 (6): 1001- 1007.
doi: 10.2307/2261181 |
|
Paw U K T , Falk M , Suchanek T H , et al. Carbon dioxide exchange between an old-growth forest and the atmosphere. Ecosystems, 2004. 7 (5): 513- 524. | |
Phillips O L , Lewis S L , Baker T R , et al. The changing Amazon forest. Philosophical Transactions of the Royal Society B:Biological Sciences, 2008. 363 (1498): 1819- 1827.
doi: 10.1098/rstb.2007.0033 |
|
Phillips O L , Malhi Y , Higuchi N , et al. Changes in the carbon balance of tropical forests:evidence from long-term plots. Science, 1998. 282 (5388): 439- 442.
doi: 10.1126/science.282.5388.439 |
|
Pregitzer K S , Euskirchen E S . Carbon cycling and storage in world forests:biome patterns related to forest age. Global Change Biology, 2004. 10 (12): 2052- 2077.
doi: 10.1111/j.1365-2486.2004.00866.x |
|
Ryan M G , Binkley D , Fownes J H , et al. An experimental test of the causes of forest growth decline with stand age. Ecological Monographs, 2004. 74 (3): 393- 414.
doi: 10.1890/03-4037 |
|
Ryan M G , Yoder B J . Hydraulic limits to tree height and tree growth. Bioscience, 1997. 47 (4): 235- 242.
doi: 10.2307/1313077 |
|
Saigusa N , Yamamoto S , Hirata R , et al. Temporal and spatial variations in the seasonal patterns of CO2 flux in boreal, temperate, and tropical forests in East Asia. Agricultural and Forest Meteorology, 2008. 148 (5): 700- 713.
doi: 10.1016/j.agrformet.2007.12.006 |
|
Saleska S R , Miller S D , Matross D M , et al. Carbon in Amazon forests:unexpected seasonal fluxes and disturbance-induced losses. Science, 2003. 302 (5650): 1554- 1557.
doi: 10.1126/science.1091165 |
|
Schiegg K . Effects of dead wood volume and connectivity on saproxylic insect species diversity. Ecoscience, 2000. 7 (3): 290- 298.
doi: 10.1080/11956860.2000.11682598 |
|
Seedre M , Kopáček J , Janda P , et al. Carbon pools in a montane old-growth Norway spruce ecosystem in Bohemian Forest:effects of stand age and elevation. Forest Ecology and Management, 2015. 346 (2): 106- 113. | |
Shu S M , Zhu W Z , Wang W Z , et al. Effects of tree size heterogeneity on carbon sink in old forests. Forest Ecology and Management, 2019. 432, 637- 648.
doi: 10.1016/j.foreco.2018.09.023 |
|
Spies T A , Franklin J F . The diversity and maintenance of old-growth forests. New York: Oxford University Press. 1996. | |
Sumiyoshi Y , Crow S E , Litton C M , et al. Belowground impacts of perennial grass cultivation for sustainable biofuel feedstock production in the tropics. GCB Bioenergy, 2017. 9 (4): 694- 709.
doi: 10.1111/gcbb.12379 |
|
Tan Z H , Zhang Y P , Schaefer D , et al. An old-growth subtropical Asian evergreen forest as a large carbon sink. Atmospheric Environment, 2011. 45 (8): 1548- 1554.
doi: 10.1016/j.atmosenv.2010.12.041 |
|
Taylor A R , Seedre M , Brassard B W , et al. Decline in net ecosystem productivity following canopy transition to late-succession forests. Ecosystems, 2014. 17 (5): 778- 791.
doi: 10.1007/s10021-014-9759-3 |
|
Taylor S L , MacLean D A . Rate and causes of decline of mature and overmature balsam fir and spruce stands in New Brunswick, Canada. Canadian Journal of Forest Research, 2005. 35 (35): 2479- 2490. | |
Ueyama M , Iwata H , Harazono Y . Autumn warming reduces the CO2 sink of a black spruce forest in interior Alaska based on a nine-year eddy covariance measurement. Global Change Biology, 2014. 20 (4): 1161- 1173.
doi: 10.1111/gcb.12434 |
|
Urrutia-Jalabert R , Malhi Y , Lara A . The oldest, slowest rainforests in the world? massive biomass and slow carbon dynamics of Fitzroya cupressoides temperate forests in southern Chile. PLoS One, 2015. 10 (9): e0137569.
doi: 10.1371/journal.pone.0137569 |
|
Valentini R , Matteucci G , Dolman A J , et al. Respiration as the main determinant of carbon balance in European forests. Nature, 2000. 404 (6780): 861- 865.
doi: 10.1038/35009084 |
|
van Miegroet H , Moore P T , Tewksbury C E , et al. Carbon sources and sinks in high-elevation spruce-fir forests of the Southeastern US. Forest Ecology and Management, 2007. 238 (1): 249- 260. | |
van Tuyl S , Law B E , Turner D P , et al. Variability in net primary production and carbon storage in biomass across Oregon forests- an assessment integrating data from forest inventories, intensive sites, and remote sensing. Forest Ecology and Management, 2005. 209 (3): 273- 291.
doi: 10.1016/j.foreco.2005.02.002 |
|
Vesala T , Launiainen S , Kolari P , et al. Autumn temperature and carbon balance of a boreal Scots pine forest in Southern Finland. Biogeosciences, 2010. 7 (1): 163- 176. | |
Wang C K , Bond-Lamberty B , Gower S T . Carbon distribution of a well- and poorly-drained black spruce fire chronosequence. Global Change Biology, 2003. 9 (7): 1066- 1079.
doi: 10.1046/j.1365-2486.2003.00645.x |
|
Wang S Q , Zhou L , Chen J M , et al. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance. Journal of Environmental Management, 2011. 92 (6): 1651- 1662.
doi: 10.1016/j.jenvman.2011.01.024 |
|
Watson R T , Noble I R , Bolin B , et al. IPCC, Land use, land-use change, and forestry:aspecial report of the IPCC. Cambridge: Cambridge University Press. 2000. 23- 51. | |
Whitman A A , Hagan J M . An index to identify late-successional forest in temperate and boreal zones. Forest Ecology and Management, 2007. 246 (2/3): 144- 154. | |
Wirth C , Czimczik C I , Schulze E D . Beyond annual budgets:carbon flux at different temporal scales in fire-prone siberian Scots pine forests. Tellus. Series B, Chemical and Physical Meteorology, 2002. 54 (5): 611- 630.
doi: 10.3402/tellusb.v54i5.16690 |
|
Wirth C, Messier C, Bergeron Y, et al. 2009. Old-growth forest definitions: a pragmatic view//Wirth C, Gleixner G, Heimann M. Old growth forests: function, fate, and value. Berlin: Springer-Verlag, 11-33. | |
Xu C Y , Turnbull M H , Tissue D T , et al. Age-related decline of stand biomass sequestration is primarily due to mortality and not to reduction in NPP associated with individual tree physiology, tree growth or stand structure in a Quercus-dominated forest. Journal of Ecology, 2012. 100 (2): 428- 440.
doi: 10.1111/j.1365-2745.2011.01933.x |
|
Yan J H , Zhang Y P , Yu G R , et al. Seasonal and inter-annual variations in net ecosystem exchange of two old-growth forests in southern China. Agricultural and Forest Meteorology, 2013. 182/183, 257- 265.
doi: 10.1016/j.agrformet.2013.03.002 |
|
Zak D R , Host G E , Pregitzer K S . Regional variability in nitrogen mineralization, nitrification, and overstory biomass in northern Lower Michigan. Canadian Journal of Forest Research, 1989. 19 (12): 1521- 1526.
doi: 10.1139/x89-231 |
|
Zhang J H , Yu G R , Han S J , et al. Seasonal and annual variation of CO2 flux above a broad-leaved Korean pine mixed forest. Science in China Series D:Earth Sciences, 2006. 49 (SII): 63- 73. | |
Zhou G Y , Liu S G , Li Z A , et al. Old-growth forests can accumulate carbon in soils. Science, 2006. 314 (5804): 1417.
doi: 10.1126/science.1130168 |
|
Zhou L , Dai L M , Wang S X , et al. Changes in carbon density for three old-growth forests on Changbai Mountain, northeast China:1981-2010. Annals of Forest Science, 2011. 68 (5): 953- 958.
doi: 10.1007/s13595-011-0101-3 |
[1] | 马莉, 牟长城, 王彪, 张妍, 李娜. 排水造林对温带小兴安岭沼泽湿地碳源/汇的影响[J]. 林业科学, 2017, 53(10): 1-12. |
[2] | 刘伟玮, 刘某承, 李文华, 曾凡顺, 曲艺. 落叶松-人参复合系统的植物多样性和碳储量特征[J]. 林业科学, 2016, 52(9): 124-132. |
[3] | 戚玉娇, 李凤日. 基于KNN方法的大兴安岭地区森林地上碳储量遥感估算[J]. 林业科学, 2015, 51(5): 46-55. |
[4] | 黄国胜, 马炜, 王雪军, 夏朝宗, 党永锋. 东北地区落叶松林碳储量估算[J]. 林业科学, 2014, 50(6): 167-174. |
[5] | 王长委, 胡月明, 沈德才, 黄胜利, 朱剑云, 王璐. 基于CBERS数据的亚热带森林地上碳储量估算[J]. 林业科学, 2014, 50(1): 88-96. |
[6] | 徐小军, 周国模, 杜华强, 周宇峰, 胡军国, 陆国富. 样本分层对毛竹林地上部分碳储量估算精度的影响[J]. 林业科学, 2013, 49(6): 18-24. |
[7] | 钱逸凡;伊力塔;张超;余树全;沈露;彭冬琴;郑超超. 浙江省中部地区公益林生物量与碳储量[J]. , 2013, 49(5): 17-23. |
[8] | 蔡倩倩;郭志华;胡启鹏;武高洁. 若尔盖高寒嵩草草甸湿地不同水分条件下土壤有机碳的垂直分布[J]. 林业科学, 2013, 49(3): 9-16. |
[9] | 申贵仓;张旭东;张雷;高升华;张蕊;朱维双;唐森强. 蜀南苦竹林生态系统碳储量与碳汇能力估测[J]. 林业科学, 2013, 49(3): 78-84. |
[10] | 牟长城;包旭;卢慧翠;王彪;崔巍. 火干扰对大兴安岭兴安落叶松瘤囊苔草湿地生态系统碳储量的短期影响[J]. , 2013, 49(2): 8-14. |
[11] | 范叶青, 周国模, 施拥军, 杜华强, 周宇峰, 徐小军. 地形条件对毛竹林分结构和植被碳储量的影响[J]. 林业科学, 2013, 49(11): 177-182. |
[12] | 顾蕾;沈振明;周宇峰;施拥军;李翠琴;AnnettePartida;徐小军. 浙江省毛竹竹板材碳转移分析[J]. 林业科学, 2012, 48(1): 186-190. |
[13] | 田大伦;王新凯;方晰;闫文德;宁晓波;王光军;. 喀斯特地区不同植被恢复模式幼林生态系统碳储量及其空间分布[J]. 林业科学, 2011, 47(9): 7-14. |
[14] | 李海奎;雷渊才;曾伟生. 基于森林清查资料的中国森林植被碳储量[J]. 林业科学, 2011, 47(7): 7-12. |
[15] | 沈希;张茂震;;祁祥斌;. 基于回归与随机模拟的区域森林碳分布估计方法比较[J]. 林业科学, 2011, 47(6): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||