林业科学 ›› 2023, Vol. 59 ›› Issue (3): 31-43.doi: 10.11707/j.1001-7488.LYKX20220607
• 前沿与重点:碳达峰、碳中和目标下林业碳汇能力提升 • 上一篇 下一篇
王兴昌1,刘帆2,孙雪1,焦振3,孙晓凤1,4,张全智1,全先奎1,王传宽1,*
收稿日期:
2022-09-06
出版日期:
2023-03-25
发布日期:
2023-05-27
通讯作者:
王传宽
基金资助:
Xingchang Wang1,Fan Liu2,Xue Sun1,Zhen Jiao3,Xiaofeng Sun1,4,Quanzhi Zhang1,Xiankui Quan1,Chuankuan Wang1,*
Received:
2022-09-06
Online:
2023-03-25
Published:
2023-05-27
Contact:
Chuankuan Wang
摘要:
目的: 明确东北温带次生林长期CO2通量与地面碳过程及其不确定性,为提升森林碳通量测算精度提供方法支撑。方法: 选择帽儿山站典型天然次生林,基于2008—2018年涡动协方差(EC)法连续监测的CO2通量、2008—2019年清单法测算的地面净初级生产力(NPP)和净生态系统生产力(NEP)以及土壤呼吸监测数据,评估2种方法测算CO2通量的不确定性来源,并比较二者是否具有一致性。结果: 1) EC法测算的11年间平均CO2净交换量(NEE)为?1.57 ± 0.64 t?hm?2 a?1,总初级生产力(GPP)为13.56 ± 1.48 t?hm?2 a?1,生态系统呼吸通量(Re)为12.00 ± 1.38 t?hm?2 a?1,三者不确定性分别为0.47、0.90和1.37 t?hm?2 a?1,相对不确定性分别为29.9%、6.6%和11.4%。2) 清单法测算的生态系统总NPP为7.54 ± 1.31 t?hm?2 a?1,冠层NPP和木质组织NPP分别为2.32 ± 0.14和2.36 ± 0.14 t?hm?2 a?1,二者分别占总NPP的30.8%和31.3%;林下植被NPP为0.39 ± 0.04 t?hm?2 a?1,仅占总NPP的5.2%,其中灌木层和草本层NPP分别为0.08 ± 0.02和0.31 ± 0.03 t?hm?2 a?1;细根NPP为2.47 ± 1.29 t?hm?2 a?1,占总NPP的32.7%。3) 冠层NPP不确定性主要来自凋落物产量;胸径测量、生长量时空变异、含碳率分别贡献1年测量木质组织NPP不确定性的32.3%、65.2%和2.5%。4) 结合箱式法土壤异养呼吸通量5.23 ± 0.20 t?m?2 a?1和倒木呼吸通量0.37 ± 0.21 t?hm?2 a?1,测算NEP为1.94 ± 1.34 t?hm?2 a?1,与基于EC法测算的NEE绝对值估算区间1.57 ± 0.47 t?hm?2 a?1重合。结论: 帽儿山典型温带次生林EC法测量的11年间平均NEE与清单法12年间地面NEP吻合较好。仔细的EC法系统设计与因地制宜的数据处理方法,应用恰当方法尽可能完整测量NPP所有组分以及增加测量年限,有助于提高碳通量测量准确度,对加深理解我国典型温带次生林CO2通量和局域尺度森林NPP和NEP的不确定性具有重要意义。
中图分类号:
王兴昌,刘帆,孙雪,焦振,孙晓凤,张全智,全先奎,王传宽. 温带次生林涡动协方差与清单法碳通量交互对比[J]. 林业科学, 2023, 59(3): 31-43.
Xingchang Wang,Fan Liu,Xue Sun,Zhen Jiao,Xiaofeng Sun,Quanzhi Zhang,Xiankui Quan,Chuankuan Wang. Intercomparison of Carbon Fluxes Measured with Eddy Covariance and Inventory Methods in Temperate Secondary Forest[J]. Scientia Silvae Sinicae, 2023, 59(3): 31-43.
表1
基于EC法的2008—2018年CO2通量年际波动及其不确定性①"
年Year | NEE/ (t?hm?2 a?1) | GPP/ (t?hm?2 a?1) | Re/(t?hm?2 a?1) | Ta/℃ | PPT/mm |
2008 | ?1.31 ± 0.33 | 11.30 ± 0.64 | 9.99 ± 0.97 | 2.96 (15.52) | 421 (378) |
2009 | ?0.39 ± 0.36 | 12.46 ± 0.71 | 12.07 ± 1.06 | 1.56 (15.04) | 546 (443) |
2010 | ?1.99 ± 0.37 | 11.88 ± 0.84 | 9.90 ± 1.21 | 0.97 (15.96) | 454 (220) |
2011 | ?2.08 ± 0.46 | 12.15 ± 0.88 | 10.07 ± 1.34 | 1.45 (14.99) | 505 (393) |
2012 | ?2.34 ± 0.43 | 14.66 ± 0.79 | 12.32 ± 1.22 | 1.00 (15.58) | 745 (497) |
2013 | ?2.22 ± 0.58 | 14.65 ± 1.26 | 12.42 ± 1.85 | 1.66 (16.12) | 936 (699) |
2014 | ?1.97 ± 0.55 | 15.41 ± 1.08 | 13.44 ± 1.63 | 2.81 (15.86) | 617 (541) |
2015 | ?1.44 ± 0.57 | 13.68 ± 1.02 | 12.24 ± 1.59 | 2.92 (15.59) | 829 (682) |
2016 | ?1.23 ± 0.53 | 14.14 ± 0.97 | 12.91 ± 1.49 | 2.01 (15.91) | 676 (562) |
2017 | ?1.63 ± 0.33 | 14.66 ± 0.58 | 13.03 ± 0.89 | 2.45 (15.70) | 633 (530) |
2018 | ?0.62 ± 0.54 | 14.22 ± 0.97 | 13.60 ± 1.50 | 2.56 (16.38) | 1077 (914) |
平均值±标准差Mean ± SD | ?1.57 ± 0.64 | 13.56 ± 1.48 | 12.00 ± 1.38 | 2.03 ± 0.75(15.70 ± 0.42) | 676 ± 206(533 ± 186) |
CV (%) | 40.95 | 10.15 | 11.50 | 36.84 (2.68) | 30.39 (34.96) |
绝对不确定性Uncertainty | 0.47 | 0.90 | 1.37 | — | — |
相对不确定性Relative uncertainty(%) | 29.9% | 6.6 | 11.4 | — | — |
表2
凋落物产量、含碳率和冠层生产力及其不确定性①"
凋落物组分Litterfall component | 凋落物产量Litterfall mass/(t?hm?2 a?1) | 含碳率Carbon concentration/(%DM) | 冠层净初级生产力Canopy net primary production/(t?hm?2 a?1) |
叶Leaf | 3.49 ± 0.25 (7.1%) | 47.19 ± 1.27 (2.7%) | 1.65 ± 0.12 (7.1%) |
小枝Twig | 0.82 ± 0.15 (18.6%) | 48.56 ± 1.06 (2.2%) | 0.40 ± 0.07 (18.6%) |
繁殖器官Reproductive organs | 0.22 ± 0.07 (30.8%) | 47.57 ± 1.36 (2.9%) | 0.11 ± 0.03 (30.8%) |
其他Miscellaneous | 0.35 ± 0.04 (11.3%) | 47.62 ± 1.80 (3.8%) | 0.17 ± 0.02 (11.3%) |
总Total | 4.88 ± 0.30 (6.2%) | 47.47 ± 1.27 (2.7%) | 2.32 ± 0.14 (6.4%) |
表6
天然次生林生态系统碳通量及其不确定性"
碳通量组分或参数Carbon flux component or parameter | 估计值Estimate | 不确定性Uncertainty | 相对不确定性Relative uncertainty(%) |
净生态系统交换Net ecosystem exchange/ (t?hm?2 a?1) | ?1.57 | 0.47 | 29.9 |
总初级生产力Gross primary production/ (t?hm?2 a?1) | 13.56 | 0.90 | 6.6 |
生态系统呼吸Ecosystem respiration/ (t?hm?2 a?1) | 12.00 | 1.37 | 11.4 |
净初级生产力Net primary production/ (t?hm?2 a?1) | 7.54 | 1.31 | 17.4 |
冠层净初级生产力Net primary production of canopy/ (t?hm?2 a?1) | 2.32 | 0.14 | 6.0 |
木质组织净初级生产力Net primary production of woody tissue/(t ?hm?2 a?1) | 2.36 | 0.14 | 5.9 |
细根净初级生产力Net primary production of fine roots/(t?hm?2 a?1) | 2.47 | 1.29 | 52.2 |
林下植被净初级生产力Net primary production of understory/(t ?hm?2 a?1) | 0.39 | 0.04 | 9.2 |
土壤呼吸通量Soil respiration/ (t?hm?2 a?1) | 8.31 | 0.32 | 3.9 |
土壤异养呼吸Soil heterotrophic respiration/(t?hm?2 a?1) | 5.23 | 0.20 | 3.8 |
粗木质残体呼吸Respiration of coarse woody debris /(t ?hm?2 a?1) | 0.37 | 0.21 | 56.8 |
异养呼吸Heterotrophic respiration/(t?hm?2 a?1) | 5.60 | 0.29 | 5.2 |
净生态系统生产力Net ecosystem production /(t?hm?2 a?1) | 1.94 | 1.34 | 69.1 |
地下碳分配Total belowground carbon allocation/ (t?hm?2 a?1) | 5.99 | 0.35 | 5.8 |
土壤呼吸/生态系统呼吸比值The ratio of soil respiration to ecosystem respiration (%) | 69.25 | 8.34 | 12.0 |
植被碳利用效率The ratio of net primary production to gross primary production (%) | 55.60 | 10.34 | 18.6 |
生态系统碳利用效率The ratio of negative value of net ecosystem exchange to gross primary production (%) | 11.58 | 3.55 | 30.7 |
陈世苹, 游翠海, 胡中民, 等 涡度相关技术及其在陆地生态系统通量研究中的应用. 植物生态学报, 2020, 44 (4): 291- 304.
doi: 10.17521/cjpe.2019.0351 |
|
Chen S P, You C H, Hu Z M, et al Eddy covariance technique and its applications in flux observations of terrestrial ecosystems. Chinese Journal of Plant Ecology, 2020, 44 (4): 291- 304.
doi: 10.17521/cjpe.2019.0351 |
|
傅 煜. 2015. 区域尺度森林地上生物量的不确定性度量研究. 北京: 中国林业科学研究院. | |
Fu Y. 2015. Uncertainty assessment for regional-level forest above-ground biomass estimates. Beijing: Chinese Academy of Forestry. [in Chinese] | |
焦 振. 2019. 帽儿山温带森林土壤呼吸组分时空动态及其影响因子. 哈尔滨: 东北林业大学. | |
Jiao Z. 2019. Spatiotemporal dynamics in soil respiration components of the temperate forests in the Maoershan region of Northeast China. Harbin: Northeast Forestry University. [in Chinese] | |
李颖池, 刘 帆, 王传宽, 等 CO2储存通量测算方法对森林生态系统碳收支估测的影响 . 应用生态学报, 2020, 31 (11): 3665- 3673. | |
Li Y C, Liu F, Wang C K, et al Carbon budget estimation based on different methods of CO2 storage flux in forest ecosystems . Chinese Journal of Applied Ecology, 2020, 31 (11): 3665- 3673. | |
刘 帆, 王传宽, 王兴昌, 等 帽儿山温带落叶阔叶林通量塔风浪区生物量空间格局. 生态学报, 2016, 36 (20): 6506- 6519. | |
Liu F, Wang C K, Wang X C, et al Spatial patterns of biomass in the temperate broadleaved deciduous forest within the fetch of the Maoershan flux tower. Acta Ecologica Sinica, 2016, 36 (20): 6506- 6519. | |
朴世龙, 岳 超, 丁金枝, 等 试论陆地生态系统碳汇在“碳中和”目标中的作用. 中国科学 地球科学, 2022, 65 (6): 1178- 1186.
doi: 10.1007/s11430-022-9926-6 |
|
Piao S L, Yue C, Ding J Z, et al Perspectives on the role of terrestrial ecosystems in the "carbon neutrality" strategy. Science China Earth Sciences, 2022, 65 (6): 1178- 1186.
doi: 10.1007/s11430-022-9926-6 |
|
秦立厚. 2017. 浙江省森林碳储量估算不确定性研究. 杭州: 浙江农林大学. | |
Qin L H. 2017. Uncertainty of forest carbon storage estimation in Zhejiang Province. Hangzhou: Zhejiang Agriculture & Forestry University. [in Chinese] | |
孙晓凤. 2021. 帽儿山天然次生林净初级生产力估算及其不确定性. 哈尔滨: 东北林业大学. | |
Sun X F. 2021. Estimation of net primary productivity and its uncertainty of a natural secondary forest in Maoershan. Harbin: Northeast Forestry University. [in Chinese] | |
王兴昌, 王传宽 森林生态系统碳循环的基本概念和野外测定方法评述. 生态学报, 2015, 35 (13): 4241- 4256. | |
Wang X C, Wang C K Fundamental concepts and field measurement methods of carbon cycling in forest ecosystems: a review. Acta Ecologica Sinica, 2015, 35 (13): 4241- 4256. | |
王 淼, 关德新, 王跃思, 等. 2006. 长白山红松针阔叶混交林生态系统生产力的估算. 中国科学: 地球科学, 36(增刊I): 70−82. | |
Wang M, Guan D X, Wang Y S, et al. 2006. Estimate of productivity in ecosystem of the broad-leaved Korean pine mixed forest in Changbai Mountain. Scientia Sinica(Terrae), 36(Sup I): 70−82 [in Chinese] | |
于贵瑞, 张雷明, 孙晓敏 中国陆地生态系统通量观测研究网络(ChinaFLUX)的主要进展及发展展望. 地理科学进展, 2014, 33 (7): 903- 917.
doi: 10.11820/dlkxjz.2014.07.005 |
|
Yu G R, Zhang L M, Sun X M Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX). Progress in Geography, 2014, 33 (7): 903- 917.
doi: 10.11820/dlkxjz.2014.07.005 |
|
张利敏, 王传宽 东北东部山区11种温带树种粗木质残体分解与碳氮释放. 植物生态学报, 2010, 34 (4): 368- 374.
doi: 10.3773/j.issn.1005-264x.2010.04.002 |
|
Zhang L M, Wang C K Carbon and nitrogen release during decomposition of coarse woody debris for eleven temperate tree species in the eastern mountain region of northeast China. Chinese Journal of Plant Ecology, 2010, 34 (4): 368- 374.
doi: 10.3773/j.issn.1005-264x.2010.04.002 |
|
张全智, 王传宽 6种温带森林碳密度与碳分配. 中国科学 生命科学, 2010, 53 (7): 831- 840.
doi: 10.1007/s11427-010-4026-0 |
|
Zhang Q Z, Wang C K Carbon density and distribution of six Chinese temperate forests. Science China Life Sciences, 2010, 53 (7): 831- 840.
doi: 10.1007/s11427-010-4026-0 |
|
张云宇, 孙晓凤, 张临峰, 等 帽儿山温带落叶阔叶林细根生物量、生产力和周转率. 应用生态学报, 2021, 32 (9): 3053- 3060.
doi: 10.13287/j.1001-9332.202109.001 |
|
Zhang Y Y, Sun X F, Zhang L F, et al Fine root biomass, production, and turnover rate in a temperate deciduous broadleaved forest in the Maoer Mountain, China. Chinese Journal of Applied Ecology, 2021, 32 (9): 3053- 3060.
doi: 10.13287/j.1001-9332.202109.001 |
|
赵 瑞, 王传宽, 全先奎, 等 黑龙江省帽儿山温带阔叶树种不同器官的生态化学计量特征. 林业科学, 2021, 57 (2): 1- 11.
doi: 10.11707/j.1001-7488.20210201 |
|
Zhao R, Wang C K, Quan X K, et al Ecological stoichiometric characteristics of different organs of broadleaf tree species in a temperate forest in Mao'ershan area, Heilongjiang Province. Scientia Silvae Sinicae, 2021, 57 (2): 1- 11.
doi: 10.11707/j.1001-7488.20210201 |
|
Aceñolaza, P G, Zamboni L P, Rodriguez E E, et al Litterfall production in forests located at the Pre-delta area of the Paraná River (Argentina). Annals of Forest Science, 2010, 67 (3): 311.
doi: 10.1051/forest/2009117 |
|
Addo-Danso S D, Prescott C E, Smith A R Methods for estimating root biomass and production in forest and woodland ecosystem carbon studies: A review. Forest Ecology and Management, 2016, 359, 332- 351.
doi: 10.1016/j.foreco.2015.08.015 |
|
Ahlström A, Raupach M, Schurgers G, et al The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink . Science, 2015, 348 (6237): 895- 899.
doi: 10.1126/science.aaa1668 |
|
Aubinet M, Vesala T, Papale D. 2012. Eddy covariance: a practical guide to measurement and data analysis. Springer | |
Bain W G, Hutyra L, Patterson D C, et al Wind-induced error in the measurement of soil respiration using closed dynamic chambers. Agricultural and Forest Meteorology, 2005, 131 (3/4): 225- 232.
doi: 10.1016/j.agrformet.2005.06.004 |
|
Baldocchi D Measuring fluxes of trace gases and energy between ecosystems and the atmosphere-the state and future of the eddy covariance method. Global Change Biology, 2014, 20 (12): 3600- 3609.
doi: 10.1111/gcb.12649 |
|
Baldocchi D, Chu H, Reichstein M Inter-annual variability of net and gross ecosystem carbon fluxes: a review. Agricultural and Forest Meteorology, 2018, 249, 520- 533.
doi: 10.1016/j.agrformet.2017.05.015 |
|
Baldocchi D D Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 2003, 9 (4): 479- 492.
doi: 10.1046/j.1365-2486.2003.00629.x |
|
Beets P, Kimberley M, Oliver G, et al Allometric equations for estimating carbon stocks in natural forest in New Zealand. Forests, 2012, 3 (4): 818- 839. | |
Cai H, Di X, Chang S, Wang C, et al Carbon storage, net primary production, and net ecosystem production in four major temperate forest types in northeastern China. Canadian Journal of Forest Research, 2016, 46 (2): 143- 151.
doi: 10.1139/cjfr-2015-0038 |
|
Campioli M, Malhi Y, Vicca S, et al Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests. Nature Communications, 2016, 7, 13717.
doi: 10.1038/ncomms13717 |
|
Chave J, Condit R, Aguilar S, et al. 2004. Error propagation and scaling for tropical forest biomass estimates. Philosophical transactions of the Royal Society of London Series B, Biological sciences, 359(1443): 409-420. | |
Chen H Y H, Brant A N, Seedre M, et al The contribution of litterfall to net primary production during secondary succession in the boreal forest. Ecosystems, 2017, 20 (4): 830- 844.
doi: 10.1007/s10021-016-0063-2 |
|
Chen J M Carbon neutrality: toward a sustainable future. Innovation, 2021, 2 (3): 100127. | |
Collalti A, Prentice I C Is NPP proportional to GPP? Waring’s hypothesis 20 years on. Tree Physiology, 2019, 39 (8): 1473- 1483.
doi: 10.1093/treephys/tpz034 |
|
Cook-Patton S C. Leavitt S M, Gibbs D, et al Mapping carbon accumulation potential from global natural forest regrowth. Nature, 2020, 585 (7826): 545- 550.
doi: 10.1038/s41586-020-2686-x |
|
Fei, X H, Jin Y Q, Zhang Y P, et al Eddy covariance and biometric measurements show that a savanna ecosystem in Southwest China is a carbon sink. Scientific Reports, 2017, 7, 41025.
doi: 10.1038/srep41025 |
|
Finzi A C., Giasson MA, Plotkin A A B, et al Carbon budget of the Harvard Forest Long-Term Ecological Research site: pattern, process, and response to global change. Ecological Monographs, 2020, 90 (4): e01423. | |
Girardin C A J, Aragão L E O C, Malhi Y, et al Fine root dynamics along an elevational gradient in tropical Amazonian and Andean forests. Global Biogeochemical Cycles, 2013, 27 (1): 252- 264.
doi: 10.1029/2011GB004082 |
|
Gough C M, Vogel C S, Schmid H P, et al Multi-year convergence of biometric and meteorological estimates of forest carbon storage. Agricultural and Forest Meteorology, 2008, 148 (2): 158- 170.
doi: 10.1016/j.agrformet.2007.08.004 |
|
Janssens I A, Lankreijer H, Matteucci G, et al Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 2001, 7 (3): 269- 278.
doi: 10.1046/j.1365-2486.2001.00412.x |
|
Jia B R, Sun H R, Yu W Y, et al Quantifying the interannual litterfall variations in China’s forest ecosystems. Journal of Plant Ecology, 2020, 13 (3): 266- 272.
doi: 10.1093/jpe/rtaa010 |
|
Jiao Z, Wang X C Contrasting rhizospheric and heterotrophic components of soil respiration during growing and non-growing seasons in a temperate deciduous forest. Forests, 2019, 10 (1): 8. | |
Ketterings Q M, Coe R, van Noordwijk M, et al Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management, 2001, 146 (1): 199- 209. | |
Lauenroth W, Wade A, Williamson M, et al Uncertainty in calculations of net primary production for grasslands. Ecosystems, 2006, 9, 843- 851.
doi: 10.1007/s10021-005-0072-z |
|
Liu F, Wang X C, Wang C K, et al Environmental and biotic controls on the interannual variations in CO2 fluxes of a continental monsoon temperate forest . Agricultural and Forest Meteorology, 2021, 296, 108232.
doi: 10.1016/j.agrformet.2020.108232 |
|
Loescher H W, Law B E, Mahrt L, et al Uncertainties in, and interpretation of, carbon flux estimates using the eddy covariance technique. Journal of Geophysical Research-Atmospheres, 2006, 111, D21S90. | |
Luyssaert S, Inglima I, Jung M, et al CO2 balance of boreal, temperate, and tropical forests derived from a global database . Global Change Biology, 2007, 13 (12): 2509- 2537.
doi: 10.1111/j.1365-2486.2007.01439.x |
|
Mason N, Beets P, Payton I, et al Individual-based allometric equations accurately measure carbon storage and sequestration in shrublands. Forests, 2014, 5 (2): 309- 324.
doi: 10.3390/f5020309 |
|
Melson S L, Harmon M E, Fried J S, et al Estimates of live-tree carbon stores in the Pacific Northwest are sensitive to model selection. Carbon Balance and Management, 2011, 6 (1): 2.
doi: 10.1186/1750-0680-6-2 |
|
Moncrieff J B, Malhi Y, Leuning R The propagation of errors in long‐term measurements of land-atmosphere fluxes of carbon and water. Global Change Biology, 1996, 2 (3): 231- 240.
doi: 10.1111/j.1365-2486.1996.tb00075.x |
|
Niu S L, Fu Z, Luo Y Q, et al Interannual variability of ecosystem carbon exchange: from observation to prediction. Global Ecology and Biogeography, 2017, 26 (11): 1225- 1237.
doi: 10.1111/geb.12633 |
|
Noormets A, Desai A R, Cook B D, et al Moisture sensitivity of ecosystem respiration: comparison of 14 forest ecosystems in the Upper Great Lakes Region, USA. Agricultural and Forest Meteorology, 2008, 148 (2): 216- 230.
doi: 10.1016/j.agrformet.2007.08.002 |
|
Piao S L, Wang X H, Wang K, et al Interannual variation of terrestrial carbon cycle: issues and perspectives. Global Change Biology, 2019, 26 (1): 300- 318. | |
Redeker K R, Baird A J, Teh Y A Quantifying wind and pressure effects on trace gas fluxes across the soil-atmosphere interface. Biogeosciences, 2015, 12 (24): 7423- 7434.
doi: 10.5194/bg-12-7423-2015 |
|
Scurlock J M O, Johnson K, Olson R J Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biology, 2002, 8 (8): 736- 753.
doi: 10.1046/j.1365-2486.2002.00512.x |
|
Steele S J, Gower S T, Vogel J G, et al Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada. Tree Physiology, 1997, 17 (8/9): 577- 587. | |
Sun T, Dong L L, Mao Z J, et al Fine root dynamics of trees and understorey vegetation in a chronosequence of Betula platyphylla stands . Forest Ecology and Management, 2015, 346, 1- 9.
doi: 10.1016/j.foreco.2015.02.035 |
|
Sun X F, Liu F, Zhang Q Z, et al Biotic and climatic controls on interannual variation in canopy litterfall of a species-rich deciduous broad-leaved forest. Agricultural and Forest Meteorology, 2021, 307, 108483.
doi: 10.1016/j.agrformet.2021.108483 |
|
Sun X, Wang X, Wang C, et al. 2022. Filling the “vertical gap” between canopy tree species and understory shrub species: biomass allometric equations for subcanopy tree species. Journal of Forestry Research, https://doi.org/10.1007/s11676-11022-01568-11670. | |
Tan Z H, Zhang Y P, Yu G R, et al Carbon balance of a primary tropical seasonal rain forest. Journal of Geophysical Research- Atmospheres, 2010, 115 (4): D00H26. | |
van Gorsel E, Delpierre N, Leuning R, et al Estimating nocturnal ecosystem respiration from the vertical turbulent flux and change in storage of CO2. Agricultural and Forest Meteorology, 2009, 149 (11): 1919- 1930.
doi: 10.1016/j.agrformet.2009.06.020 |
|
Walker W S, Gorelik S R, Cook-Patton S C, et al. 2022. The global potential for increased storage of carbon on land. Proceedings of the National Academy of Sciences, 119(23): e2111312119. | |
Wang C K Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology and Management, 2006, 222 (1/3): 9- 16.
doi: 10.1016/j.foreco.2005.10.074 |
|
Wang C K, Han Y, Chen J Q, et al Seasonality of soil CO2 efflux in a temperate forest: biophysical effects of snowpack and spring freeze-thaw cycles . Agricultural and Forest Meteorology, 2013, 177, 83- 92.
doi: 10.1016/j.agrformet.2013.04.008 |
|
Wang C, Yang J, Zhang, Q Soil respiration in six temperate forests in China. Global Change Biology, 2006, 12 (11): 2103- 2114.
doi: 10.1111/j.1365-2486.2006.01234.x |
|
Wang X C, Wang C K, Guo Q X, et al Improving the CO2 storage measurements with a single profile system in a tall-dense-canopy temperate forest . Agricultural and Forest Meteorology, 2016, 228, 327- 338. | |
Wang X C, Wang C K, Bond-Lamberty B Quantifying and reducing the differences in forest CO2-fluxes estimated by eddy covariance, biometric and chamber methods: a global synthesis . Agricultural and Forest Meteorology, 2017, 247, 93- 103.
doi: 10.1016/j.agrformet.2017.07.023 |
|
Xu B, Yang Y H, Li P, et al Global patterns of ecosystem carbon flux in forests: a biometric data-based synthesis. Global Biogeochemical Cycles, 2014, 28 (9): 962- 973.
doi: 10.1002/2013GB004593 |
|
Yanai R D, See C R, Campbell J L Current practices in reporting uncertainty in ecosystem ecology. Ecosystems, 2018, 21, 971- 981.
doi: 10.1007/s10021-017-0197-x |
|
Yang, Y H, Shi Y, Sun W J, et al Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China-Life Sciences, 2022, 65 (5): 861- 895.
doi: 10.1007/s11427-021-2045-5 |
|
Yang Y, Yanai R D, See C R, et al Sampling effort and uncertainty in leaf litterfall mass and nutrient flux in northern hardwood forests. Ecosphere, 2017, 8 (11): e01999. | |
Yuan J, Jose S, Hu Z Y, et al Biometric and eddy covariance methods for examining the carbon balance of a Larix principis-rupprechtii forest in the Qinling Mountains, China . Forests, 2018, 9 (2): 67.
doi: 10.3390/f9020067 |
|
Yuan Z Y, Chen H Y Indirect methods produce higher estimates of fine root production and turnover rates than direct methods. PLoS One, 2012, 7 (11): e48989.
doi: 10.1371/journal.pone.0048989 |
|
Zapata-Cuartas M, Sierra C A, Alleman L Probability distribution of allometric coefficients and Bayesian estimation of aboveground tree biomass. Forest Ecology and Management, 2012, 277, 173- 179.
doi: 10.1016/j.foreco.2012.04.030 |
[1] | 程春香,于敏,毛子军,谢连妮,张永成,孙涛,徐作敏,吴双,荔千妮,徐嘉. 中国生态保护修复进程下的黑龙江省NPP时空演变及突变模式[J]. 林业科学, 2022, 58(7): 23-31. |
[2] | 田相林,廖梓延,孙帅超,薛海连,王彬,曹田健. 多源数据对林分动态预测的影响及不确定性分析[J]. 林业科学, 2021, 57(3): 51-66. |
[3] | 王彬,田相林,曹田健. 油松幼树树高生长预测的不确定性贝叶斯分析[J]. 林业科学, 2020, 56(11): 73-86. |
[4] | 吕振刚,李文博,黄选瑞,张志东. 气候变化情景下基于潜在NPP的河北省华北落叶松生长适宜性[J]. 林业科学, 2019, 55(11): 37-44. |
[5] | 何潇,雷渊才,薛春泉,徐期瑚,李海奎,曹磊. 广东省木荷碳密度及其不确定性估计[J]. 林业科学, 2019, 55(11): 163-171. |
[6] | 陈亮, 周国模, 杜华强, 刘玉莉, 毛方杰, 徐小军, 李雪建, 崔璐, 李阳光, 朱迪恩. 基于随机森林模型的毛竹林CO2通量模拟及其影响因子[J]. 林业科学, 2018, 54(8): 1-12. |
[7] | 赵菡, 雷渊才, 符利勇. 江西省不同立地等级的马尾松林生物量估计和不确定性度量[J]. 林业科学, 2017, 53(8): 81-93. |
[8] | 徐小军, 周国模, 杜华强, 施拥军, 周宇峰. 缺失数据插补方法及其参数估计窗口大小对毛竹林CO2通量估算的影响[J]. 林业科学, 2015, 51(9): 141-149. |
[9] | 傅煜, 雷渊才, 曾伟生. 区域尺度杉木生物量估计的不确定性度量[J]. 林业科学, 2014, 50(12): 79-86. |
[10] | 于颖, 范文义, 杨曦光. 1901—2008年小兴安岭森林NPP估算[J]. 林业科学, 2014, 50(10): 16-23. |
[11] | 张冬有;冯仲科;李亦秋;张丽娟;董斌. 基于C-FIX模型的黑龙江省森林植被净初级生产力遥感估算[J]. 林业科学, 2011, 47(7): 13-19. |
[12] | 赵仲辉;张利平;康文星;田大伦;项文化;闫文德;彭长辉;. 湖南会同杉木人工林生态系统CO2通量特征[J]. 林业科学, 2011, 47(11): 6-12. |
[13] | 武曙红 宋维明. CDM造林再造林项目源汇估计的不确定性源及其估算方法[J]. 林业科学, 2010, 46(4): 31-36. |
[14] | 鲁法典 Peter Lohmander. 风险状态下混交林最优经营决策[J]. 林业科学, 2009, 12(11): 83-89. |
[15] | 毛子军 王秀伟 赵甍. 质量平衡法估测树干呼吸的理论与应用[J]. 林业科学, 2007, 43(10): 106-111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||