 
		林业科学 ›› 2020, Vol. 56 ›› Issue (12): 75-82.doi: 10.11707/j.1001-7488.20201209
沈阔程1,2,陈倩文1,齐梅1,彭子嘉1,樊军锋1,余仲东1,*
收稿日期:2019-09-25
									
				
									
				
									
				
											出版日期:2020-12-25
									
				
											发布日期:2021-01-22
									
			通讯作者:
					余仲东
												基金资助:Kuocheng Shen1,2,Qianwen Chen1,Mei Qi1,Zijia Peng1,Junfeng Fan1,Zhongdong Yu1,*
Received:2019-09-25
									
				
									
				
									
				
											Online:2020-12-25
									
				
											Published:2021-01-22
									
			Contact:
					Zhongdong Yu   
												摘要:
目的: 分析杨树叶片物理结构与其抗锈性的相关性,并提出相应的形态学指标,为指导生产中抗锈病杨树种质筛选提供参考。方法: 调查西北农林科技大学渭河实验站29种杨树无性系秋末夏孢子堆密度;并采集树冠下层成熟叶片,通过光学显微镜、透射电镜、扫描电镜分析杨树叶片解剖结构间的差异,蜡质厚度、上下表皮厚度、栅栏组织厚度、海绵组织厚度等12个叶片结构指标与叶片夏孢子堆密度的相关性。结果: 在夏孢子堆密度Euclidean聚类中,29个杨树无性系可分为3组,结合杨树派别分类得出白杨派杨树为Melampsora larici-populina的非寄主、黑杨派为较强抗病寄主、青杨派为易感病寄主,黑杨派69杨♀与青杨派青杨♂杂种一代(F1)呈现出易感病特征,杂交杨树抗锈性与父本抗性密切相关。寄主杨树中下表皮厚度、海绵组织厚度、叶片总厚度显著大于非寄主杨树;而栅栏组织厚度、相邻气孔距离及海绵组织细胞密度则显著小于非寄主杨树。在寄主杨树中易感病组上表皮厚度显著小于较强抗性组。相关性综合分析表明蜡质厚度、下表皮细胞壁厚度与抗锈病能力具有一个稳定的正相关关系。结论: 不同杨树的抗锈病能力具有显著的差异,蜡质厚度和下表皮细胞壁厚度可作为快速筛选抗锈病杨树品种的2个形态学指标。
中图分类号:
沈阔程,陈倩文,齐梅,彭子嘉,樊军锋,余仲东. 杨树叶片结构与抗锈菌侵染的相关性[J]. 林业科学, 2020, 56(12): 75-82.
Kuocheng Shen,Qianwen Chen,Mei Qi,Zijia Peng,Junfeng Fan,Zhongdong Yu. Correlation between Poplar Leaf Structure and the Resistance to Rust Infection[J]. Scientia Silvae Sinicae, 2020, 56(12): 75-82.
| 康振生, 黄丽丽, 李振岐, 等. 小麦对条锈菌入侵反应的超微结构研究. 西北农业学报, 1993, 2 (3): 25- 28. | |
| Kang Z S , Huang L L , Li Z Q , et al. Ultrastructural study on the invasion of wheat stripe rust. Northwest Agricultural Journal, 1993, 2 (3): 25- 28. | |
| 李琴. 2010.冬枣锈病发病规律及病生理研究.长沙: 中南林业科技大学硕士学位论文. | |
| Li Q. 2010. Winter jujube rust disease incidence and disease physiology research. Changsha: MS thesis of Central South University of Forestry and Technology.[in Chinese] | |
| 藕丹, 樊军锋, 高建社, 等. SSR和SCoT标记在美洲黑杨×青杨派杂种无性系遗传差异性分析上的比较. 西北农林科技大学学报:自然科学版, 2017, 45 (4): 779- 85. | |
| Ou D , Fan J F , Gao J S , et al. Comparison of SSR and SCoT markers in the genetic difference analysis of hybrid clones of Populus euphratica×Sect. Tacamahaca. Journal of Northwest A&F University:Natural Science Edition, 2017, 45 (4): 779- 785. | |
| 沈阔程. 2019.叶表蜡质及重寄生菌对松杨栅锈菌的作用.杨凌: 西北农林科技大学硕士学位论文. | |
| Shen K C. 2019. Leaf cuticle and mycoparasite fungi contributes to Melampsora larici-populina infection. Yangling: MS thesis of Northwest A&F University.[in Chinese] | |
| 唐志鹏. 2006.杧果果实生理病害海绵组织发生规律及其防治方法的研究.长沙: 湖南农业大学博士学位论文. | |
| Tang Z P. 2006. Study on the causes and the control method of spongy tissue of fruit disorder in mango (Mangifera indica L.). Changsha: PhD thesis of Hunan Agricultural University.[in Chinese] | |
| 田呈明, 梁英梅, 康振生, 等.  杨树与栅锈菌互作的细胞学研究. 林业科学, 2002, 38 (3): 87- 93. doi: 10.3321/j.issn:1001-7488.2002.03.016 | |
| Tian C M ,  Liang Y M ,  Kang Z S , et al.  Cytological studies on the host-pathogen relationship in the course of poplar leaf infection by Melampsora larici-populina. Scientia Silvae Sinicae, 2002, 38 (3): 87- 93. doi: 10.3321/j.issn:1001-7488.2002.03.016 | |
| 田呈明, 康振生, 李振岐, 等.  杨树叶锈病组织病理学和细胞学研究. 西北林学院学报, 2001, 6 (2): 43- 49. doi: 10.3969/j.issn.1001-7461.2001.02.011 | |
| Tian C M ,  Kang Z S ,  Li Z Q , et al.  Histopathology and cytology of poplar rust. Journal of Northwest Forestry University, 2001, 6 (2): 43- 49. doi: 10.3969/j.issn.1001-7461.2001.02.011 | |
| 田呈明, 梁英梅, 康振生, 等. 青杨叶锈病菌(Melampsora larici-populina Kleb.)侵染过程的超微结构研究. 植物病理学报, 2002, 32 (1): 71- 78. | |
| Tian C M , Liang Y M , Kang Z S , et al. Ultrastructural study on the infection process of Melampsora larici-populina Kleb. Journal of Plant Pathology, 2002, 32 (1): 71- 78. | |
| 王晨芳. 2008.小麦与条锈菌互作过程中活性氧迸发的组织学和细胞化学研究.杨凌: 西北农林科技大学博士学位论文. | |
| Wang C F. 2008. Studies on histology and cytochemistey of oxidative rust during wheat Puccinia striiformis f. sp. tritici interaction. Yangling: PhD thesis of Northwest A&F University.[in Chinese] | |
| Allen E A ,  Hazen B E ,  Hoch H C , et al.  Appressorium formation in response to topographical signals by 27 rust species. Phytopathology, 1991, 81 (3): 323- 331. doi: 10.1094/Phyto-81-323 | |
| Barres B , Halkett F , Dutech C , et al. Genetic structure of the poplar rust fungus Melampsora larici-populina: evidence for isolation by distance in Europe and recent founder effects overseas. Infection Genetics & Evolution, 2008, 8 (5): 577- 587. | |
| Bessire M ,  Chassot C ,  Jacquat A C , et al.  A permeable cuticle in Arabidopsis leads to a strong resistance to Botrytis cinerea. Embo Journal, 2007, 26 (8): 2158- 2168. doi: 10.1038/sj.emboj.7601658 | |
| Bettgenhaeuser J , Gilbert B , Ayliffe M , et al. Nonhost resistance to rust pathogens-a continuation of continua. Frontiers of Plant Science, 2014, 5, 664. | |
| Boyle B ,  Levee V ,  Hamel L P , et al.  Molecular and histochemical characterisation of two distinct poplar Melampsora leaf rust pathosystems. Plant Biol (Stuttg), 2010, 12 (2): 364- 376. doi: 10.1111/j.1438-8677.2009.00310.x | |
| Chu W J ,  Gao H Y ,  Cao S F , et al.  Composition and morphology of cuticular wax in blueberry (Vaccinium spp.) fruits. Food Chem, 2017, 219, 436- 442. doi: 10.1016/j.foodchem.2016.09.186 | |
| Dowkiw A ,  Bastien C .  Characterization of two major genetic factors controlling quantitative resistance to Melampsora larici-populina leaf rust in hybrid poplars:strain specificity, field expression, combined effects, and relationship with a defeated qualitative resistance gene. Phytopathology, 2004, 94 (12): 1358- 1367. doi: 10.1094/PHYTO.2004.94.12.1358 | |
| Fink W , Haug M , Deising H , et al. Early defence responses of cowpea (Vigna sinensis L.) induced by non-pathogenic rust fungi. Planta, 1991, 185 (2): 246- 254. | |
| Frey P ,  Pinon J .  Variability in pathogenicity of Melampsora allii-populina expressed on poplar cultivars. Eurpean Journal of Forest Pathology, 1997, 27 (6): 397- 407. doi: 10.1111/j.1439-0329.1997.tb01455.x | |
| Gembeh S V ,  Brown R L ,  Grimm C , et al.  Identification of chemical components of corn kernel pericarp wax associated with resistance to Aspergillus flavus infection and aflatoxin production. Journal of Agriculture and Food Chemistry, 2001, 49 (10): 4635- 4641. doi: 10.1021/jf010450q | |
| Haworth M ,  Scutt C P ,  Douthe C , et al.  Allocation of the epidermis to stomata relates to stomatal physiological control:Stomatal factors involved in the evolutionary diversification of the angiosperms and development of amphistomaty. Environmental and Experimental Botany, 2018, 151, 55- 63. doi: 10.1016/j.envexpbot.2018.04.010 | |
| Heath M C .  Cellular interactions between biotrophic fungal pathogens and host or nonhost plants. Canadian Journal of Plant Pathology, 2002, 24 (3): 259- 264. doi: 10.1080/07060660209507007 | |
| Heath M C .  Nonhost resistance and nonspecific plant defenses. Current Opinion of Plant Biology, 2000, 3 (4): 315- 319. doi: 10.1016/S1369-5266(00)00087-X | |
| Hoch H C ,  Staples R C ,  Whitehead B , et al.  Signaling for growth orientation and cell differentiation by surface topography in Uromyces. Science, 1987, 235 (4796): 1659- 1662. doi: 10.1126/science.235.4796.1659 | |
| Jetter R ,  Riederer M .  Localization of the transpiration barrier in the epi- and intracuticular waxes of eight plant species:water transport resistances are associated with fatty Acyl rather than alicyclic components. Plant Physiology, 2016, 170 (2): 921- 934. doi: 10.1104/pp.15.01699 | |
| Newcombe G .  Genes for parasite-specific, nonhost resistance in Populus. Phytopathology, 2005, 95 (7): 779- 783. doi: 10.1094/PHYTO-95-0779 | |
| Nicolas O , Charles M T , Jenni S , et al. Relationships between Xanthomonas campestris pv. vitians population sizes, stomatal density and lettuce resistance to bacterial leaf spot. Canadian Journal of Plant Pathology, 2018, 40 (3): 399- 407. | |
| Özer N ,  Şabudak T ,  Özer C , et al.  Investigations on the role of cuticular wax in resistance to powdery mildew in grapevine. Journal of General Plant Pathology, 2017, 83 (5): 316- 328. doi: 10.1007/s10327-017-0728-5 | |
| Pambou E ,  Hu X Z ,  Li Z Y , et al.  Structural features of reconstituted cuticular wax films upon interaction with nonionic surfactant C12E6. Langmuir, 2018, 34 (11): 3395- 3404. doi: 10.1021/acs.langmuir.8b00143 | |
| Persoons A , Morin E , Delaruelle C , et al. Patterns of genomic variation in the poplar rust fungus Melampsora larici-populina identify pathogenesis-related factors. Front Plant Sci, 2014, 5, 450. | |
| Pinon J ,  Frey P ,  Husson C .  Wettability of poplar leaves influences dew formation and infection by Melampsora larici-populina. Plant Disease, 2006, 90 (2): 177- 184. doi: 10.1094/PD-90-0177 | |
| Russin J S ,  Guo B Z ,  Tubajika K M , et al.  Comparison of kernel wax from corn genotypes resistant or susceptible to Aspergillus flavus. Phytopathology, 1997, 87 (5): 529- 533. doi: 10.1094/PHYTO.1997.87.5.529 | |
| Stochlova P , Novotna K , Benetka V . Variation in resistance to the rust fungus Melampsora larici-populina Kleb. in Populus nigra L. in the Czech Republic. iForest, 2016, 9, 146- 153. | |
| Thordal-Christensen H , Zhang Z , Wei Y D , et al. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant Journal, 1997, 11 (6): 1187- 1194. | |
| Ullah C ,  Unsicker S B ,  Fellenberg C , et al.  Flavan-3-ols are an effective chemical defense against rust infection. Plant Physiology, 2017, 175 (4): 1560- 1578. doi: 10.1104/pp.17.00842 | |
| Wan Z ,  Li Y ,  Liu M , et al.  Natural infectious behavior of the urediniospores of Melampsora larici-populina on poplar leaves. Journal of Forestry Research, 2015, 26 (1): 225- 231. doi: 10.1007/s11676-015-0021-4 | |
| Wan Z B ,  Li Y R ,  Chen Y N , et al.  Melampsora larici-populina, the main rust pathogen, causes loss in biomass production of black cottonwood plantations in the south of China. Phytoparasitica, 2013, 41 (3): 337- 344. doi: 10.1007/s12600-013-0294-0 | |
| Xia W , Yu H , Cao P , et al. Identification of TIFY family genes and analysis of their expression profiles in response to phytohormone treatments and Melampsora larici-populina infection in poplar. Frontiers of Plant Science, 2017, 8, 493. | |
| Yang Y H ,  Zhao J ,  Xing H J , et al.  Different non-host resistance responses of two rice subspecies, japonica and indica, to Puccinia striiformis f. sp.tritici. Plant Cell Reports, 2014, 33 (3): 423- 433. doi: 10.1007/s00299-013-1542-y | |
| Yi B ,  Zeng F Q ,  Lei S L , et al.  Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant Journal, 2010, 63 (6): 925- 938. doi: 10.1111/j.1365-313X.2010.04289.x | |
| Yu Z D ,  Peng S B ,  Ren Z Z , et al.  Infection behaviour of Melampsora larici-populina on the leaf surface of Populus purdomii. Agriculture Science of China, 2011, 10 (10): 1562- 1569. doi: 10.1016/S1671-2927(11)60152-1 | 
| [1] | 孙伟博,宫新栋,周燕,李红岩. 转玉米PEPC和PPDK基因杨树苗期的光合生理特性[J]. 林业科学, 2020, 56(7): 33-43. | 
| [2] | 何经纬,张伊莹,田呈明,熊典广,梁英梅. 区域景观格局对杨树锈病为害流行的影响——以北京延庆地区银白杨为例[J]. 林业科学, 2020, 56(4): 99-108. | 
| [3] | 刘文鑫,陈志成,代永欣,万贤崇. 水通道蛋白PIP1基因过表达杨树的光合生理过程对干旱和复水的响应[J]. 林业科学, 2020, 56(2): 69-78. | 
| [4] | 孙伟博,魏朝琼,马晓星,魏辉,诸葛强. 3类转基因南林895杨田间试验的安全性评估[J]. 林业科学, 2020, 56(10): 53-62. | 
| [5] | 张超, 王进茂, 赵洁, 庞丁玮, 张德健, 杨敏生. 转多基因欧美杨Bt基因表达特征[J]. 林业科学, 2019, 55(9): 61-70. | 
| [6] | 辛福梅, 闫小莉, 张长耀, 贾黎明. 西藏拉萨河谷区藏川杨和北京杨树干液流特征及其对环境因子的响应[J]. 林业科学, 2019, 55(2): 22-32. | 
| [7] | 张扬, 杜琳, 唐贤丰, 刘唤唤, 周功克, 柴国华. 杨树BAG基因的鉴定及表达模式分析[J]. 林业科学, 2019, 55(1): 138-145. | 
| [8] | 李建庆, 梅增霞, 杨忠岐. 不同林分杨树云斑天牛种群空间格局地统计学分析[J]. 林业科学, 2018, 54(3): 83-90. | 
| [9] | 黄绢, 陈存, 张伟溪, 丁昌俊, 苏晓华, 黄秦军. 干旱胁迫对转JERF36银中杨苗木叶片解剖结构及光合特性的影响[J]. 林业科学, 2017, 53(5): 8-15. | 
| [10] | 余仲东, 陈祖静, 曹支敏, 任争争, 冯世强, 张瑶琦. 松杨栅锈菌无毒基因型性状分离及AvrL567同源序列分析[J]. 林业科学, 2017, 53(5): 88-96. | 
| [11] | 尹吴, 孙伟博, 周燕, 诸葛强. 毛果杨Rubisco活化酶基因的克隆与功能分析[J]. 林业科学, 2017, 53(4): 83-95. | 
| [12] | 章小铃, 王留强, 孙佩, 吴立栓, 樊玮, 张进, 卢孟柱, 胡建军. 杨树不同种质花粉萌发和致敏蛋白的差异[J]. 林业科学, 2017, 53(2): 54-64. | 
| [13] | 李真, 王留强, 卢孟柱. 毛白杨PtoWOX11/12a对杨树扦插苗生长发育的影响[J]. 林业科学, 2017, 53(11): 69-76. | 
| [14] | 储文渊, 王玉娇, 朱东悦, 陈竹, 严涵薇, 项艳. 盐和干旱胁迫下杨树新内参基因的筛选[J]. 林业科学, 2017, 53(10): 70-79. | 
| [15] | 曹国玉, 李继祥, 买买提库尔班·阿力, 李开花, 胡建军. 杨树良种‘北杨’[J]. 林业科学, 2016, 52(9): 156-156. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||