|  | 毕恺艺, 牛铮, 黄妮, 等.  基于Sentinel-2A时序数据和面向对象决策树方法的植被识别. 地理与地理信息科学, 2017, 33 (5): 16- 20.16-20, 27, 127 doi: 10.3969/j.issn.1672-0504.2017.05.003
 | 
																													
																						|  | Bi K Y ,  Niu Z ,  Huang N , et al.  Identifying vegetation with decision tree model based on object-oriented method using multi-temporal Sentinel-2A images. Geography and Geo-Information Science, 2017, 33 (5): 16- 20.16-20, 27, 127 doi: 10.3969/j.issn.1672-0504.2017.05.003
 | 
																													
																						|  | 丁世飞, 齐丙娟, 谭红艳.  支持向量机理论与算法研究综述. 电子科技大学学报, 2011, 40 (1): 2- 10. | 
																													
																						|  | Ding S F ,  Qi B J ,  Tan H Y .  An overview on theory and algorithm of support vector machines. Journal of University of Electronic Science and Technology of China, 2011, 40 (1): 2- 10. | 
																													
																						|  | 郭文婷, 张晓丽.  基于Sentinel-2时序多特征的植被分类. 浙江农林大学学报, 2019, 36 (5): 849- 856. | 
																													
																						|  | Guo W T ,  Zhang X L .  Vegetation classification based on a multi-feature Sentinel-2 time series. Journal of Zhejiang A&F University, 2019, 36 (5): 849- 856. | 
																													
																						|  | 李军玲, 庞勇, 李增元, 等.  机载AISA Eagle Ⅱ高光谱数据在温带天然林树种分类中的应用. 东北林业大学学报, 2019, 47 (5): 72- 76. doi: 10.3969/j.issn.1000-5382.2019.05.014
 | 
																													
																						|  | Li J L ,  Pang Y ,  Li Z Y , et al.  Tree species classification using airborne hyperspectral data in a temperate natural forest. Journal of Northeast Forestry University, 2019, 47 (5): 72- 76. doi: 10.3969/j.issn.1000-5382.2019.05.014
 | 
																													
																						|  | 李哲, 张沁雨, 邱新彩, 等.  基于高分二号遥感影像树种分类的时相及方法选择. 应用生态学报, 2019, 30 (12): 4059- 4070. doi: 10.13287/j.1001-9332.201912.016
 | 
																													
																						|  | Li Z ,  Zhang Q Y ,  Qiu X C , et al.  Temporal stage and method selection of tree species classification based on GF-2 remote sensing image. Chinese Journal of Applied Ecology, 2019, 30 (12): 4059- 4070. doi: 10.13287/j.1001-9332.201912.016
 | 
																													
																						|  | 马浩然. 2014. 基于多层次分割的遥感影像面向对象森林分类. 北京: 北京林业大学. | 
																													
																						|  | Ma H R. 2014. Object-based remote sensing image classification of forest based on multi-level segmentation. Beijing: Beijing Forestry University. [in Chinese] | 
																													
																						|  | 马倩, 邹焕新, 李美霖, 等.  基于SNIC的双时相SAR图像超像素协同分割算法. 系统工程与电子技术, 2021, 43 (5): 1198- 1209. | 
																													
																						|  | Ma Q ,  Zou H X ,  Li M L , et al.  Super pixel cooperative segmentation algorithm for bi-temporal SAR image based on SNIC. Systems Engineering and Electronics, 2021, 43 (5): 1198- 1209. | 
																													
																						|  | 毛丽君, 李明诗.  GEE环境下联合Sentinel主被动遥感数据的国家公园土地覆盖分类. 武汉大学学报(信息科学版), 2021, 1- 19. | 
																													
																						|  | Mao L J ,  Li M S .  Integrating sentinel active and passive data to map land cover in a national park from GEE platform. Geomatics and Information Science of Wuhan University, 2021, 1- 19. | 
																													
																						|  | 山东省农业科学院情报资料研究所.  常用农业科技词汇. 济南: 山东科学技术出版社, 1983. | 
																													
																						|  | Institute of Information and Information, Shandong Academy of Agricultural Sciences .  Commonly agricultural science and technology vocabulary. Jinan: Shandong Science & Technology Press, 1983. | 
																													
																						|  | 谢珠利. 2019. 基于多源高分辨率遥感数据的人工林树种分类研究. 杭州: 浙江农林大学. | 
																													
																						|  | Xie Z L. 2019. Plantation tree species classification with multi-source high resolution remotely sensed data. Hangzhou: Zhejiang A & F University. [in Chinese] | 
																													
																						|  | 徐凯健, 田庆久, 徐念旭, 等.  基于时序NDVI与光谱微分变换的森林优势树种识别. 光谱学与光谱分析, 2019, 39 (12): 3794- 3800. | 
																													
																						|  | Xu K J ,  Tian Q J ,  Xu N X , et al.  Classifying forest dominant trees species based on high dimensional time-series NDVI data and differential transform methods. Spectroscopy and Spectral Analysis, 2019, 39 (12): 3794- 3800. | 
																													
																						|  | 尹凌宇, 覃先林, 孙桂芬, 等.  基于高分二号多光谱数据的树种识别方法. 林业资源管理, 2016, (4): 121- 127. | 
																													
																						|  | Yin L Y ,  Qin X L ,  Sun G F , et al.  Tree species identification method based on GF-2 images. Forest Resources Management, 2016, (4): 121- 127. | 
																													
																						|  | 袁旭. 2019. 基于超像素的图像分割方法研究. 武汉: 华中科技大学. | 
																													
																						|  | Yuan X. 2019. Research on image segmentation method based on super-pixel. Wuhan: Huazhong University of Science and Technology. [in Chinese] | 
																													
																						|  | Achanta R ,  Shaji A ,  Smith K , et al.  SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34 (11): 2274- 2282. doi: 10.1109/TPAMI.2012.120
 | 
																													
																						|  | Achanta R, Süsstrunk S. 2017. Superpixels and polygons using simple non-iterative clustering. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA. IEEE, 4895-4904. | 
																													
																						|  | Bolyn C ,  Michez A ,  Gaucher P , et al.  Forest mapping and species composition using supervised per pixel classification of Sentinel-2 imagery. Biotechnologie, Agronomie Societe et Environnement, 2018, 22 (3): 172- 187. | 
																													
																						|  | Congalton R G .  A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 1991, 37 (1): 35- 46. | 
																													
																						|  | Deventer V ,  Ward A D ,  Gowda P H , et al.  Using thematic mapper data to identify contrasting soil plains and tillage practices. Photogrammetric Engineering & Remote Sensing, 1997, 63 (1): 87- 93. | 
																													
																						|  | Drusch M ,  Del B U ,  Carlier S , et al.  Sentinel-2: ESA's optical high-resolution mission for GMES operational service. Remote Sensing of Environment, 2012, 120, 25- 36. | 
																													
																						|  | Foody G .  Assessing the accuracy of remotely sensed data: principles and practices. The Photogrammetric Record, 2010, 25 (130): 204- 205. | 
																													
																						|  | Gao B .  NDWI-a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 1996, 58 (3): 257- 266. | 
																													
																						|  | Gitelson A A ,  Kaufman Y J ,  Merzlyak M N .  Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 1996, 58 (3): 289- 298. | 
																													
																						|  | Hansen M C ,  Potapov P V ,  Moore R , et al.  High-resolution global maps of 21st-century forest cover change. Science, 2013, 342 (6160): 850- 853. | 
																													
																						|  | Immitzer M ,  Vuolo F ,  Atzberger C .  First experience with sentinel-2 data for crop and tree species classifications in central Europe. Remote Sensing, 2016, 8 (3): 166. | 
																													
																						|  | Lacaux J P ,  Tourre Y M ,  Vignolles C , et al.  Classification of ponds from high-spatial resolution remote sensing: application to Rift Valley Fever epidemics in Senegal. Remote Sensing of Environment, 2007, 106 (1): 66- 74. | 
																													
																						|  | Le Maire G L ,  Francois C ,  Dufrene E .  Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment, 2004, 89 (1): 1- 28. | 
																													
																						|  | Mahdianpari M ,  Salehi B ,  Mohammadimanesh F , et al.  Big data for a big country: the first generation of Canadian wetland inventory map at a spatial resolution of 10-m using Sentinel-1 and Sentinel-2 data on the google earth engine cloud computing platform. Canadian Journal of Remote Sensing, 2020, 46 (1): 15- 33. | 
																													
																						|  | Mahdianpari M ,  Salehi B ,  Mohammadimanesh F , et al.  The first wetland inventory map of newfoundland at a spatial resolution of 10 m using Sentinel-1 and Sentinel-2 data on the google earth engine cloud computing platform. Remote Sensing, 2019, 11 (1): 43. | 
																													
																						|  | Persson M ,  Lindberg E ,  Reese H .  Tree species classification with multi-temporal sentinel-2 data. Remote Sensing, 2018, 10 (11): 1794. | 
																													
																						|  | Tassi A ,  Vizzari M .  Object-oriented LULC classification in google earth engine combining SNIC, GLCM, and machine learning algorithms. Remote Sensing, 2020, 12 (22): 3776. | 
																													
																						|  | Tsai Y H ,  Stow D ,  Chen H L , et al.  Mapping vegetation and land use types in Fanjingshan national nature reserve using google earth engine. Remote Sensing, 2018, 10 (6): 927. | 
																													
																						|  | Tucker C J .  Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 1979, 8 (2): 127- 150. | 
																													
																						|  | Vapnik V .  Pattern recognition using generalized portrait method. Automation and remote control, 1963, 24, 774- 780. | 
																													
																						|  | Zhou L ,  Luo T ,  Du M Y , et al.  Machine learning comparison and parameter setting methods for the detection of dump sites for construction and demolition waste using the google earth engine. Remote Sensing, 2021, 13 (4): 787. |