|
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
|
|
Bao S D . Soil agricultural chemistry analysis. Beijing: China Agriculture Press, 2000.
|
|
陈俊. 2020. 干旱荒漠区苹果园自然生草效果研究. 新疆维吾尔自治区: 塔里木大学.
|
|
Chen J. 2020. Effect of natural weeds on fuji apple orchard in arid desert area. Xinjiang Uygur Autonomous Region: Tarim University. [in Chinese]
|
|
陈隆升, 梅莉, 陈永忠, 等. 油茶林生草栽培对地表径流及氮磷流失特征的影响. 南京林业大学学报(自然科学版), 2021, 45 (6): 127- 134.
|
|
Chen L S , Mei L , Chen Y Z , et al. Effects of interplanting herbage on surface runoff associated with nitrogen and phosphorus losses in Camellia oleifera plantations. Journal of Nanjing Forestry University(Natural Sciences Edition), 2021, 45 (6): 127- 134.
|
|
陈永忠, 邓绍宏, 陈隆升, 等. 油茶产业发展新论. 南京林业大学学报(自然科学版), 2020, 44 (1): 1- 10.
|
|
Chen Y Z , Deng S H , Chen L S , et al. A new view on the development of soil tea camellia industry. Journal of Nanjing Forestry University(Natural Sciences Edition), 2020, 44 (1): 1- 10.
|
|
丛微, 于晶晶, 喻海茫, 等. 不同气候带森林土壤微生物多样性和群落构建特征. 林业科学, 2022, 58 (2): 70- 79.
|
|
Cong W , Yu J J , Yu H M , et al. Diversity and community assembly of forest soil microorganisms in different climatic zones. Scientia Silvae Sinicae, 2022, 58 (2): 70- 79.
|
|
傅聿青, 李江, 李建安, 等. 生草栽培对油茶林地土壤养分特征和微生物及酶活性的影响. 经济林研究, 2018, 36 (3): 82- 88.
|
|
Fu J Q , Li J , Li J A , et al. Effect of sod culture on soil characteristics, microorganisms and enzymatic activities of Camellia oleifera land. Non-Wood Forest Research, 2018, 36 (3): 82- 88.
|
|
高翠萍, 李岩, 刘美英, 等. Vario MACRO cube元素分析仪测定土壤碳氮方法研究. 北方农业学报, 2017, 45 (1): 76- 79.
doi: 10.3969/j.issn.2096-1197.2017.01.15
|
|
Gao C P , Li Y , Liu M Y , et al. Study on the determination of soil carbon and nitrogen by vario MACRO cube elemental analyzer. Journal of Northern Agriculture, 2017, 45 (1): 76- 79.
doi: 10.3969/j.issn.2096-1197.2017.01.15
|
|
高尚坤, 肖文发, 曾立雄, 等. 马尾松人工林干扰对土壤微生物群落结构的短期影响. 林业科学, 2018, 54 (12): 92- 101.
doi: 10.11707/j.1001-7488.20181210
|
|
Gao S K , Xiao W F , Zeng L X , et al. Short term effects of Pinus massoniana plantation disturbance on soil microbial community structure. Scientia Silvae Sinicae, 2018, 54 (12): 92- 101.
doi: 10.11707/j.1001-7488.20181210
|
|
郭晓睿, 宋涛, 邓丽娟, 等. 果园生草对中国果园土壤肥力和生产力影响的整合分析. 应用生态学报, 2021, 32 (11): 4021- 4028.
|
|
Guo X R , Song T , Deng L J , et al. Effects of grass growing on soil fertility and productivity of orchards in China: a meta-analysis. Chinese Journal of Applied Ecology, 2021, 32 (11): 4021- 4028.
|
|
贺纪正, 李晶, 郑袁明. 土壤生态系统微生物多样性-稳定性关系的思考. 生物多样性, 2013, 21 (4): 411- 420.
|
|
He J Z , Li J , Zheng Y M . Thoughts on the microbial diversity-stability relationship in soil ecosystems. Biodiversity Science, 2013, 21 (4): 411- 420.
|
|
金翠萍, 向斯, 郭溪, 等. 不同碳源对Delftiatsuruhatensis HT01脱氮性能的影响. 中国环境科学, 2019, 39 (4): 1478- 1484.
|
|
Jin C P , Xiang S , Guo X , et al. The influence of different carbon sources on the nitrogen removal characters of a Delftiatsuruhatensis HT01. China Environmental Science, 2019, 39 (4): 1478- 1484.
|
|
林先贵, 冯有智, 陈瑞蕊. 农田潮土养分耦合循环的微生物学机理研究进展. 植物营养与肥料学报, 2017, 23 (6): 1575- 1589.
|
|
Lin X G , Feng Y Z , Chen R R . Research progresses of soil microorganisms driven nutrient coupling cycles in fluvo-aquic soils of China. Journal of Plant Nutrition and Fertilizer, 2017, 23 (6): 1575- 1589.
|
|
刘彩霞, 焦如珍, 董玉红, 等. 应用PLFA方法分析氮沉降对土壤微生物群落结构的影响. 林业科学, 2015, 51 (6): 155- 162.
|
|
Liu C X , Jiao R Z , Dong Y H , et al. Effect of nitrogen deposition on soil microbial community structure determined with the PLFA method. Scientia Silvae Sinicae, 2015, 51 (6): 155- 162.
|
|
钱雅丽, 梁志婷, 曹铨, 等. 陇东旱作果园生草对土壤细菌群落组成的影响. 生态学杂志, 2018, 37 (10): 3010- 3017.
|
|
Qian Y L , Liang Z T , Cao Q , et al. Effects of grass-planting on soil bacterial community composition of apple orchard in Longdong arid region. Chinese Journal of Ecology, 2018, 37 (10): 3010- 3017.
|
|
孙纪全, 梁斌, 黄星, 等. Sphingobium属细菌土壤中降解异丙隆的特性. 土壤学报, 2011, 48 (2): 383- 388.
|
|
Sun J Q , Liang B , Huang X , et al. Characteristics of isoproturon degradation in soils by strains of Sphingobium. Acta Pedologica Sinica, 2011, 48 (2): 383- 388.
|
|
吴希慧, 王蕊, 高长青, 等. 土地利用驱动的土壤性状变化影响微生物群落结构和功能. 生态学报, 2021, 41 (20): 7989- 8002.
|
|
Wu X H , Wang R , Gao C Q , et al. Variations of soil properties effect on microbial community structure and functional structure under land uses. Acta Ecologica Sinica, 2021, 41 (20): 7989- 8002.
|
|
吴玉森, 张艳敏, 冀晓昊, 等. 自然生草对黄河三角洲梨园土壤养分、酶活性及果实品质的影响. 中国农业科学, 2013, 46 (1): 99- 108.
|
|
Wu Y S , Zhang Y M , Yi X H , et al. Effects of natural grass on soil nutrient, enzyme activity and fruit quality of pear orchard in Yellow River Delta. Scientia Agricultura Sinica, 2013, 46 (1): 99- 108.
|
|
肖力婷, 杨慧林, 黄文新, 等. 生草栽培对南丰蜜橘园土壤酶活性及氮循环功能微生物的影响. 应用与环境生物学报, 2021, 27 (6): 1476- 1484.
|
|
Xiao L T , Yang H L , Huang W X , et al. Effect of grass cultivation on soil enzyme activities and nitrogen cycling function microorganisms in Nanfeng Tangerine Orchard. Chinese Journal of Applied and Environmental Biology, 2021, 27 (6): 1476- 1484.
|
|
颜晓捷, 黄坚钦, 邱智敏, 等. 生草栽培对杨梅果园土壤理化性质和果实品质的影响. 浙江农林大学学报, 2011, 28 (6): 850- 854.
|
|
Yan X J , Huang J Q , Qiu Z M , et al. Soil physical and chemical properties and fruit quality with grass cover in a Myrica rubra orchard. Journal of Zhejiang A & F University, 2011, 28 (6): 850- 854.
|
|
余锦林, 尤龙辉, 徐惠昌, 等. 果园生草改善土壤质量和锥栗农艺性状的效果. 草业科学, 2021, 38 (12): 2460- 2470.
|
|
Yu J L , You L H , Xu H C , et al. Effects of artificial grass on improving soil quality and agronomic traits of chestnuts in a Castanea henryi orchard. Pratacultural Science, 2021, 38 (12): 2460- 2470.
|
|
袁军, 谭晓风, 袁德义, 等. 油茶根系分布规律调查研究. 浙江林业科技, 2009, 29 (4): 30- 32.
|
|
Yuan J , Tang X F , Yuan D Y , et al. Study on root system distribution of Camellia oleifera. Journal of Zhejiang Forestry Science and Technology, 2009, 29 (4): 30- 32.
|
|
Bardgett R D , Putten W . Belowground biodiversity and ecosystem functioning. Nature, 2014, 515 (7528): 505- 511.
|
|
Bai B , Liu W , Qiu X , et al. The root microbiome: community assembly and its contributions to plant fitness. Journal of Integrative Plant Biology, 2022, 64 (2): 230- 243.
|
|
Jiao S , Yang Y , Xu Y , et al. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. The ISME Journal, 2020, 14 (1): 202- 216.
|
|
Kader M , Lamb D T , Correll R , et al. Pore-water chemistry explains zinc phytotoxicity in soil. Ecotoxicology & Environmental Safety, 2015, 122, 252- 259.
|
|
Li F , Chen L , Redmile-Gordon M , et al. Mortierellaelongata's roles in organic agriculture and crop growth promotion in amineral soil. Land Degradation & Development, 2018, 29 (6): 1642- 1651.
|
|
Liu C , Chen L , Tang W , et al. Predicting potential distribution and evaluating suitable soil condition of oil tea Camellia in China. Forests, 2018, 9 (8): 487.
|
|
Mcgill B J , Etienne R S , Gray J S , et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters, 2007, 10, 995- 1015.
|
|
Ni Y , Yang T , Ma Y , et al. Soil pH determines bacterial distribution and assembly processes in natural mountain forests of eastern China. Global Ecology and Biogeography, 2021, 30 (11): 2164- 2177.
|
|
Sunagawa S , Coelho L P , Chaffron S , et al. Structure and function of the global ocean microbiome. Science, 2015, 348 (6237): 1261359.
|
|
Wei H , Zhang K , Zhang J , et al. Grass cultivation alters soil organic carbon fractions in a subtropical orchard of southern China. Soil and Tillage Research, 2018, 181, 110- 116.
|
|
Widdig M , Heintz-Buschart A , Schleuss P M , et al. Effects of nitrogen and phosphorus addition on microbial community composition and element cycling in a grassland soil. Soil Biology and Biochemistry, 2020, 151, 108041.
|
|
Xun W , Liu Y , Li W , et al. Specialized metabolic functions of keystone taxa sustain soil microbiome stability. Microbiome, 2021, 9 (1): 1- 15.
|
|
Zhang S , Li K , Hu J , et al. Distinct assembly mechanisms of microbial sub-communities with different rarity along the Nu River. Journal of Soils and Sediments, 2022, 22 (5): 1530- 1545.
|
|
Zhang X , Myrold D D , Shi L , et al. Resistance of microbial community and its functional sensitivity in the rhizosphere hotspots to drought. Soil Biology and Biochemistry, 2021, 161, 108360.
|