白晓旭, 史荣久, 尤业明, 等. 2015. 河南宝天曼不同林龄与林型森林土壤的细菌群落结构与多样性.应用生态学报, 26(8):2273-2281. (Bai X X, Shi R J, You Y M,et al. 2015. Bacterial community structure and diversity in soils of different forest ages and types in Baotianman forest, Henan Province, China. Chinese Journal of Applied Ecology, 26(8):2273-2281.[in Chinese]) 陈志学, 张 怀, 谢永生, 等. 2014. 冀北山区强风化岩坡面水土流失治理技术. 中国水土保持, (8):22-25. Chen Z X, Zhang H, Xie Y S, et al. 2014. Soil and water loss control technology of strong weathered rock slope in northern Hebei Mountainous Area. Soil and Water Conservation in China, 8(2):22-25.[in Chinese]) 戴雅婷, 闫志坚, 解继红, 等. 2017. 基于高通量测序的两种植被恢复类型根际土壤细菌多样性研究. 土壤学报, 54(3):735-748. (Dai Y T,Yan Z J,Xie J H,et al.2017,Soil Bacterua diversity in rhizosphere under two types of vegetation restoration based on high throughput sequencing. Acta Pedologica Sinica, 54(3):735-748.[in Chinese]) 丁新景, 敬如岩, 黄雅丽, 等. 2017. 黄河三角洲刺槐根际与非根际细菌结构及多样性. 土壤学报, 54(5):1293-1302. (Ding X J, Jing R Y, Huang Y L, et al. 2017. Bacterial structure and diversity of rhizosphere and bulk soil of Robinia pseudoacacia forests in Yellow River Delta. Acta Pedologica Sinica, 54(5):1293-1302.[in Chinese]) 丁新景, 敬如岩, 黄雅丽, 等. 2018. 基于高通量测序的4种不同树种人工林根际土壤细菌结构及多样性. 林业科学, 54(1):81-89. (Ding X J, Jing R Y, Huang Y L, et al. 2018. Bacterial structure and diversity of rhizosphere soil of four tree species in yellow river delta based on high-throughput sequencing. Scientia Silvae Sinicae, 54(1):81-89.[in Chinese]) 金一鸣, 杨建英, 王志明, 等. 2016. 冀北接坝山区风场特征与风蚀沙埋分布的关系. 水土保持通报, 36(2):32-37. (Jin Y M, Yang J Y, Wang Z M, et al. 2016. Relation of wind field characterstics with wind erosion and erosive sand burial in Jieba Mountain Area of Hebei Province. Bulletin of Soil and Water Conservation, 36(2):32-37.[in Chinese]) 梁月明, 苏以荣, 张 伟, 等. 2013. 桂西北不同植被恢复阶段土壤氨氧化细菌遗传多样性研究. 土壤学报, 50(2):364-371. (Liang Y M, Su Y R, Zhang W, et al. 2013. Gnetic diversities of soil ammonia-oxidizing bacteria at various vegetation restoration stages in southwest Guangxi, China. Acta Pedologica Sinica, 50(2):364-371.[in Chinese]) 刘 洋, 黄懿梅, 曾全超. 2016. 黄土高原不同植被类型下土壤细菌群落特征研究. 环境科学, 37(10):3931-3938. (Liu Y, Huang Y M, Zeng Q C. 2016. Soil bacterial communities under different vegetation types in the Loess Plateau. Environmental Science, 37(10):3931-3938.[in Chinese]) 乔沙沙, 周永娜, 刘晋仙, 等. 2017. 关帝山针叶林土壤细菌群落结构特征. 林业科学, 53(2):89-99. (Qiao S S, Zhou Y N, Liu J X, et al. 2017. Characteristics of soil bacterial community structure in coniferous forests of Guandi Mountains,Shanxi Province. Scientia Silvae Sinicae,53(2):89-99.[in Chinese]) 汤涤洛, 涂修亮, 潘国雄, 等. 2018. 不同苎麻品种根际土壤细菌多样性. 西南农业学报, 31(3):538-543. (Tang D L, Tu X L, Pan G X,et al. 2018. Soil bacterial diversity of different ramie varieties. Southwest China Journal of Agricultural Sciences, 31(3):538-543.[in Chinese]) 王安宁, 蔺 鑫, 穆 枫, 等. 2018. 冀北木兰围场沙荒坡地不同坡位黄柳沙障内枯落物的持水性能. 北京林业大学学报, 40(1):98-107. (Wang A N, Lin X, Mu F, et al. 2018. Water holding capacity of litter at different slope positions of sand slope in Salix gordejevii sand barrier of Mulan Paddock of northern Hebei Province, northern China. Journal of Beijing Forestry University, 40(1):98-107.[in Chinese]) 王 鹏, 陈 波, 张 华. 2017. 基于高通量测序的鄱阳湖典型湿地土壤细菌群落特征分析. 生态学报, 37(5):1650-1658. (Wang P, Chen B, Zhang H. 2017. High throughput sequencing analysis of bacterial communities in soils of a typical Poyang Lake wetland. Acta Ecologica Sinica, 37(5):1650-1658.[in Chinese]) 汪其同, 朱婉芮, 刘梦玲, 等. 2015. 基于高通量测序的杨树人工林根际和非根际细菌群落结构比较.应用与环境生物学报, 21(5):967-973. (Wang Q T, Zhu W R, Liu M L, et al. 2015. Comparison on bacterial community of rhizosphere and bulk soil of poplar plantation based on pyrosequencing. Chin J Appl Environ Biol, 21(5):967-973.[in Chinese]) 王新洲, 胡忠良, 杜有新, 等. 2010. 喀斯特生态系统中乔木和灌木林根际土壤微生物生物量及其多样性的比较. 土壤, 42(2):224-229. (Wang X Z, Hu Z L, Du Y X, et al. 2010. Comparison of microbial biomass and community structure of rhizosphere soil between forest and shrubbery in Karst ecosystems. Soils, 42(2):224-229.[in Chinese]) 徐 飞, 蔡体久, 杨 雪, 等. 2016. 三江平原沼泽湿地垦殖及自然恢复对土壤细菌群落多样性的影响. 生态学报, 36(22):7412-7421. (Xu F, Cai T J, Yang X, et al. 2016. Effect of cultivation and natural restoration on soil bacterial community diversity in marshland in the Sanjiang Plain. Acta Ecologica Sinica, 36(22):7412-7421.[in Chinese]) 于 翠, 吕德国, 秦嗣军, 等. 2006. 本溪山樱根际与非根际解磷细菌群落结构及动态变化. 应用生态学报, 17(12):2381-2384. (Yu C, Lü D G, Qin S J,et al. 2006. Community structure and its dynamics of phosphobacteria in Cerasus sachalinensis rhizosphere and non-rhizosphere. Acta Ecologica Sinica, 17(12):2381-2384.[in Chinese]) Berg G, Grube M, Schloter M,et al. 2014. Unraveling the plant microbiome:Looking back and future perspectives.Frontiers in Microbiology, 5:1-6. Berg G, Smalla K. 2009. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizospere. FEMS Micribiology Ecology, 68(1):1-13. Bolger A M, Lohse M, Usadel B. 2014. Trimmomatic:a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15):2114-2120. Cocking E C. 2003. Endophytic colonisation of plant roots by nitrogen-fixing bacteria. Plant Soil, 252:169-175. Dennis K L, Wang Y W, Blatner N R,et al. 2013. Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells. Cancer Research, 73(19):5905-5913. Edgar R C. 2013. UPARSE:highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10(10):996-998. Fierer N, Jackson R B. 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences, 103(3):626-631. Hooper D U, Bignell D E, Brown V K,et al. 2000. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems:Patterns, mechanisms, and feedbacks. BioScience, 50(12):1049-1061. Jiang X T, Peng X, Deng G H, et al. 2013. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a Mangrove wetland. Microbial Ecology, 66(1):96-104. Johansen J E, Binnerup S J. 2002. Contribution of cytophagalike bacteria to the potential of turn over of carbon, nittrogen, and phosphorus by bacteria in the rhizosphere of barely (Hordeum vulgare L.). Microbial Ecology, 43(3):298-306. Jones R J, Thomann L, Ye J. 2009. Precision stabilization of femtosecond lasers to high-fi nesse optical cavities. Phys Rev A, 69:051803-1-4. Ligi T, Oopkaup K, Truu M,et al. 2014. Characterization of bacterial communities in soil and sediment of a created riverine wetland complex using high-throughput 16S rRNA amplicon sequencing.Ecological Engineering, 72:56-66. Lugtenberg B, Kamilova F. 2009. Plant-growth-promoting rhizobacteria. Ann Rev Microbiol, 63:541-556. Riley D, Barber S A. 1970. Salt accumulation at the soybean [Glycine max (L.) Merr.] root-soil interface. Soil Science Society of America Journal, 34(1):154-155. Sun L, Lu Y, Kronzucker H J, et al. 2016. Quantification and enzymetargets of fatty acid amides from duckweed root exudates involved in the stimulation of denitrification. Journal of Plant Physiology, 198:81-88. Vance E D, Brookes P C, Jenkinson D S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem, 19(6):703-707. Watkins Jr J E W, Cardelús C L. 2012. Ferns in an angiosperm world:cretaceous radiation into the epiphytic niche and diversification on the forest floor. International Journal of Plant Sciences, 173(6):695-710. Zhang J, Wang Q, Fan J L,et al. 2015. Comparisons of microbial abundance and community among different plant species in constructed wetlands in summer. Ecological Engineering, 82:376-380. |