 
		林业科学 ›› 2022, Vol. 58 ›› Issue (5): 102-112.doi: 10.11707/j.1001-7488.20220511
李斌1,史鸿翔2,刘兰兰2,杨璞1,张欣1,陈航1,冯颖1,陈晓鸣1,*
收稿日期:2021-05-27
									
				
									
				
									
				
											出版日期:2022-05-25
									
				
											发布日期:2022-08-19
									
			通讯作者:
					陈晓鸣
												基金资助:Bin Li1,Hongxiang Shi2,Lanlan Liu2,Pu Yang1,Xin Zhang1,Hang Chen1,Ying Feng1,Xiaoming Chen1,*
Received:2021-05-27
									
				
									
				
									
				
											Online:2022-05-25
									
				
											Published:2022-08-19
									
			Contact:
					Xiaoming Chen   
												摘要:
目的: 探明女贞不同营养器官和根际土壤真菌群落的物种组成、多样性和功能群特征,为研究女贞及其相关真菌的互作关系及开发利用女贞内生和根际真菌资源奠定基础,同时为林木微生物组研究提供参考。方法: 以女贞叶、茎、根和根际土壤为研究对象,基于真菌rRNA基因ITS1区,应用Illumina MiSeq高通量扩增子测序技术,结合生物信息学分析,解析女贞内生和根际土壤真菌群落的多样性、物种组成及功能群特征,并比较其群落结构差异。结果: 女贞叶、茎、根和根际土壤真菌丰富度排序为根际土壤>茎>根>叶,多样性为根际土壤>叶>茎>根。4种样品共有的OTU为31个,占OTU总数的2.08%。在叶、茎和根内分别有39.42%、35.26%和76.94%的OTU同时存在于根际土壤中。β-多样性分析表明,β多样性分析表明,叶的真菌群落结构与茎较为相似,而与根和根际土壤差异较大生态位的真菌群落结构存在显著差异(R=0.898 1,P < 0.01)。在门水平上,叶、茎、根和根际土壤真菌群落的优势菌均为子囊菌门和担子菌门;在属级水平上,叶、茎内生真菌的优势属为枝孢属和维希尼克氏酵母属,根内优势属为Rhexodenticula和普可尼亚属,根际土壤的优势属为裸盖菇属和Saitozyma。叶、茎、根及根际土壤共有的真菌主要包括枝孢属、维希尼克氏酵母属、Saitozyma、Rachicladosporium、Symmetrospora、链格孢属及青霉菌属。在真菌功能群分类中,叶、茎、根和根际土壤真菌功能群分类呈现地上和地下部分分化的特征,叶和茎中的真菌以复合营养型(病理-腐生-共生营养型、病理-腐生营养型)为主,分别占叶和茎真菌功能群的76.97%和91.68%,而根和根际土壤中的真菌以单一营养型(腐生营养型、共生营养型)为主,分别占60.05%和67.51%。结论: 女贞根际土壤的真菌多样性显著高于叶、茎和根。叶的真菌群落结构和功能群特征与茎较为相似,但与根和根际土壤差异较大。在叶和茎中,真菌功能群以病理-腐生-共生营养型为主,而根和根际土壤中的真菌功能群以腐生营养型为主。
中图分类号:
李斌,史鸿翔,刘兰兰,杨璞,张欣,陈航,冯颖,陈晓鸣. 女贞叶、茎、根及根际土壤真菌群落结构及功能群特征[J]. 林业科学, 2022, 58(5): 102-112.
Bin Li,Hongxiang Shi,Lanlan Liu,Pu Yang,Xin Zhang,Hang Chen,Ying Feng,Xiaoming Chen. Characteristics of Community Structure and Functional Group of Fungi in Leaf, Stem, Root and Rhizosphere Soil of Ligustrum lucidum[J]. Scientia Silvae Sinicae, 2022, 58(5): 102-112.
 
												
												表1
不同样品测序信息及α多样性指数①"
| 样品 Sample | 原始序列数 Raw sequences | 有效序列数 Valid sequences | 丰富度指数Richness index | 多样性指数Diversity index | 覆盖度 Coverage (%) | |||
| Chao1 | Ace | Shannon | Simpson | |||||
| LE | 60 659±5 372 | 60 527±5381 | 142.36±28.11 a | 138.19±24.56 a | 3.08±0.22 a | 0.096±0.02 a | 99.98±0.01 | |
| SE | 61 233±4 283 | 60 331±3 849 | 283.55±57.84 b | 281.89±55.43 b | 3.00±0.48 a | 0.118±0.02 a | 99.93 ±0.04 | |
| RE | 61 562±9 633 | 61 330±9 499 | 191.91±50.66 a | 193.38±53.24 a | 2.86±0.07 a | 0.148±0.06 a | 99.97± 0.02 | |
| RS | 69 180±3 097 | 67 764±2 814 | 900.90±12.30 c | 903.80±16.31 c | 3.89±0.13 b | 0.096±0.01 a | 99.74 ±0.01 | |
| 合计Total | 757 906 | 749 855 | — | — | — | — | — | |
| 曹红雨, 高广磊, 丁国栋, 等. 呼伦贝尔沙区4种生境土壤真菌群落结构和多样性. 林业科学, 2019, 55 (8): 118- 127. | |
| Cao H Y , Gao G L , Ding G D , et al. Community structure and diversity of soil fungi in four habitats in Hulun Buir sandy land. Scientia Silvae Sinicae, 2019, 55 (8): 118- 127. | |
| 陈安徽, 陈宏伟, 邵颖, 等. 女贞内生真菌清除自由基活性成分的分离纯化. 食品科学, 2014, 35 (9): 101- 105. | |
| Chen A H , Chen H W , Shao Y , et al. Separation and purification of free radical scavenging bioactive components from endophytic fungi in Ligustrum lucidum. Food Science, 2014, 35 (9): 101- 105. | |
| 陈晓鸣. 白蜡虫自然种群生态学. 北京: 科学出版社, 2011. | |
| Chen X M . Natural population ecology of Ericerus pela. Beijing: Science Press, 2011. | |
| 程敏, 胡正海. 女贞子的生物学和化学成分研究进展. 中草药, 2010, 41 (7): 1219- 1221. | |
| Cheng M , Hu Z H . Advances in research on biological and chemical constituents of Ligustrum lucidum. Chinese Traditional and Herbal Drugs, 2010, 41 (7): 1219- 1221. | |
| 何铮. 镉胁迫下丛枝菌根真菌对大叶女贞生长及镉耐受性的影响. 西部林业科学, 2020, 49 (1): 87- 91. | |
| He Z . Effects of arbuscular mycorrhizal fungi on growth and cadmium tolerance of Ligustrum compactum under cadmium stress. Journal of West China Forestry Science, 2020, 49 (1): 87- 91. | |
| 刘美红, 李帅岚, 张莲, 等. 女贞属植物的化学成分和药理活性研究进展. 中草药, 2020, 51 (12): 226- 237. | |
| Liu M H , Li S L , Zhang L , et al. Review on research progress of chemical constituents and pharmacological activities of Ligustrum. Chinese Traditional and Herbal Drugs, 2020, 51 (12): 226- 237. | |
| 王颜波, 张伟溪, 丁昌俊, 等. 不同生态环境下银中杨内生菌群落结构及生态位变异. 林业科学, 2020, 56 (2): 48- 60. | |
| Wang Y B , Zhang W X , Ding C J , et al. Community structure and niche differentiation of endophytic microbiome in Populus alba×P.berolinensis under different ecological environment.. Scientia Silvae Sinicae, 2020, 56 (2): 48- 60. | |
| 王志伟, 陈永敢, 王庆璨, 等. 中国植物内生微生物研究的发展和展望. 微生物学通报, 2014, 41 (3): 482- 496. | |
| Wang Z W , Chen Y G , Wang Q C , et al. Progresses and perspectives of studies on plant endophytic microbes in China. Microbiology China, 2014, 41 (3): 482- 496. | |
| 谢宪, 梁军, 朱彦鹏, 等. 赤松纯林不同松枯梢病病级针叶的内生真菌多样性及群落结构. 林业科学, 2020, 56 (9): 51- 57. | |
| Xie X , Liang J , Zhu Y P , et al. Diversity and community structure of endophytic fungi in the pure forest of Pinus densiflora infected by different incidences of Sphaeropsis sapinea. Scientia Silvae Sinicae, 2020, 56 (9): 51- 57. | |
| 袁志林, 潘雪玉, 靳微. 林木共生菌系统及其作用机制--以杨树为例. 生态学报, 2019, 39 (1): 381- 397. | |
| Yuan Z L , Pan X Y , Jin W . Tree-associated symbiotic microbes and underlying mechanisms of ecological interactions: a case study of poplar. Acta Ecologica Sinica, 2019, 39 (1): 381- 397. | |
| 袁志林, 章初龙, 林福呈. 植物与内生真菌互作的生理与分子机制研究进展. 生态学报, 2008, 28 (9): 4430- 4439. | |
| Yuan Z L , Zhang C L , Lin F C . Recent advances on physiological and molecular basis of fungal endophyte-plant interactions. Acta Ecologica Sinica, 2008, 28 (9): 4430- 4439. | |
| 张爱娣, 郑仰雄, 黄东兵. 丛枝菌根真菌对大叶女贞耐盐性的影响. 江苏农业科学, 2018, 46 (19): 129- 133. | |
| Zhang A D , Zheng Y X , Huang D B . Effects of arbuscular mycorrhizal fungi on salt tolerance of Ligustrum compactum. Jiangsu Agricultural Sciences, 2018, 46 (19): 129- 133. | |
| Adams R I ,  Miletto M ,  Taylor J W , et al.  Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. The ISME Journal, 2013, 7 (7): 1262- 1273. doi: 10.1038/ismej.2013.28 | |
| Ariantari N P ,  Ancheeva E ,  Frank M , et al.  Didymellanosine, a new decahydrofluorene analogue, and ascolactone C from Didymella sp.IEA-3B. 1, an endophyte of Terminalia catappa. RSC Advances, 2020, 10 (12): 7232- 7240. doi: 10.1039/C9RA10685E | |
| Bollmann-Giolai A , Giolai M , Heavens D , et al. A low-costpipeline for soil microbiome profiling. MicrobiologyOpen, 2020, 9, e1133. | |
| Chen P ,  Zhao M ,  Tang F , et al.  The effect of plant compartments on the Broussonetia papyrifera-associated fungal and bacterial communities. Applied Microbiology and Biotechnology, 2020, 104 (8): 3627- 3641. doi: 10.1007/s00253-020-10466-6 | |
| Chen S ,  Zhou Y ,  Chen Y , et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34 (17): i884- i890. doi: 10.1093/bioinformatics/bty560 | |
| Cregger M A ,  Veach A M ,  Yang Z K , et al.  The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome, 2018, 6 (1): 31. doi: 10.1186/s40168-018-0413-8 | |
| Coleman-Derr D , Desgarennes D , Fonseca-Garcia C , et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytologist, 2015, 209 (2): 798- 811. | |
| Edgar R C .  UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013, 10 (10): 996- 998. doi: 10.1038/nmeth.2604 | |
| Fitzpatrick C R ,  Salas-Gonzalez I ,  Conway J M , et al.  The plant microbiome: from ecology to reductionism and beyond. Annual Review of Microbiology, 2020, 74, 81- 100. doi: 10.1146/annurev-micro-022620-014327 | |
| Fonseca-García C , Coleman-Derr D , Garrido E , et al. The Cacti microbiome: interplay between habitat-filtering and host-specificity. Frontiers in Microbiology, 2016, 7, 150. | |
| Hassani M A ,  Ozkurt E ,  Seybold H , et al.  Interactions and coadaptation in plant metaorganisms. Annual Review of Phytopathology, 2019, 57, 483- 503. doi: 10.1146/annurev-phyto-082718-100008 | |
| Hollister E B ,  Lesniewski R A ,  Oakley B B , et al.  Introducing mothur: open-source, platformindependent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 2009, 75 (23): 7537- 7541. doi: 10.1128/AEM.01541-09 | |
| Kuzyakov Y ,  Razavi B S .  Rhizosphere size and shape: temporal dynamics and spatial stationarity. Soil Biology and Biochemistry, 2019, 135, 343- 360. doi: 10.1016/j.soilbio.2019.05.011 | |
| Lemanceau P ,  Blouin M ,  Muller D , et al.  Let the core microbiota be functional. Trends in Plant Science, 2017, 22 (7): 583- 595. doi: 10.1016/j.tplants.2017.04.008 | |
| Li S J ,  Zhang X ,  Wang X H , et al.  Novel natural compounds from endophytic fungi with anticancer activity. European Journal of Medicinal Chemistry, 2018, 156, 316- 343. doi: 10.1016/j.ejmech.2018.07.015 | |
| Liu Y X ,  Qin Y ,  Chen T , et al.  A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell, 2021, 12 (5): 315- 330. doi: 10.1007/s13238-020-00724-8 | |
| Martin F M ,  Uroz S ,  Barker D G .  Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science, 2017, 356 (6340): eaad4501. doi: 10.1126/science.aad4501 | |
| Mago DčT ,  Salzberg SL .  FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011, 27 (21): 2957- 2963. doi: 10.1093/bioinformatics/btr507 | |
| Mousa W K , Schwan A , Davidson J , et al. An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products. Frontiers in Microbiology, 2015, 6, 1157. | |
| Nguyen N H ,  Song Z ,  Bates S T , et al.  FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 2016, 20, 241- 248. doi: 10.1016/j.funeco.2015.06.006 | |
| Nilsson R H ,  Larsson K H ,  Taylor A F S , et al.  The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 2019, 47 (D1): D259- D264. doi: 10.1093/nar/gky1022 | |
| Philippot L ,  Raaijmakers J M ,  Lemanceau P , et al.  Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 2013, 11 (11): 789- 799. doi: 10.1038/nrmicro3109 | |
| Porras-Alfaro A ,  Bayman P .  Hidden fungi, emergent properties: endophytes and microbiomes. Annual Review of Phytopathology, 2011, 49, 291- 315. doi: 10.1146/annurev-phyto-080508-081831 | |
| Qin Y , Pan X Y , Yuan Z L . Seed endophytic microbiota in a coastal plant and phytobeneficial properties of the fungus Cladosporium cladosporioides. Fungal Ecology, 2016a, (24): 53- 60. | |
| Rodriguez R J ,  Jr W J ,  Arnold A E , et al.  Fungal endophytes: diversity and functional roles. New Phytologist, 2009, 182 (2): 314- 326. doi: 10.1111/j.1469-8137.2009.02773.x | |
| Saleem M ,  Hu J ,  Jousset A .  More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annual Review of Ecology, Evolution, and Systematics, 2019, 50 (1): 145- 168. doi: 10.1146/annurev-ecolsys-110617-062605 | |
| Schulz B ,  Bommert A K ,  Dammann U , et al.  The endophyte-host interaction: a balanced antagonism?. Mycological Research, 1999, 103 (10): 1275- 1283. doi: 10.1017/S0953756299008540 | |
| Segata N ,  Izard J ,  Waldron L , et al.  Metagenomic biomarker discovery and explanation. Genome Biology, 2011, 12 (6): R60. doi: 10.1186/gb-2011-12-6-r60 | |
| Sun H ,  Gao S S ,  Li X M , et al.  Chemical constituents of marine mangrove-derived endophytic fungus Alternaria tenuissima EN-192. Chinese Journal of Oceanology and Limnology, 2013, 31 (2): 464- 470. doi: 10.1007/s00343-013-2106-2 | |
| Sun T ,  Wang X Q ,  Zhao Z L , et al.  A lethal fungus infects the chinese white wax scale insect and causes dramatic changes in the host microbiota. Scientific Reports, 2018, 8, 5324. doi: 10.1038/s41598-018-23671-1 | |
| Trivedi P ,  Leach J E ,  Tringe S G , et al.  Plant-microbiome interactions: from community assembly to plant health. Nature Reviews Microbiology, 2020, 18, 607- 621. doi: 10.1038/s41579-020-0412-1 | |
| Vandenkoornhuyse P ,  Quaiser A ,  Duhamel M , et al.  The importance of the microbiome of the plant holobiont. New Phytologist, 2015, 206, 1196- 1206. doi: 10.1111/nph.13312 | |
| Vorholt J A .  Microbial life in the phyllosphere. Nature Reviews Microbiology, 2012, 10, 828- 840. doi: 10.1038/nrmicro2910 | |
| Wang Q ,  Garrity G M ,  Tiedje J M , et al.  Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 2007, 73 (16): 5261- 5267. doi: 10.1128/AEM.00062-07 | |
| Wang H X , Shi H , Wang Y H . Effects of weather, time, and pollution level on the amount of particulate matter deposited on leaves of Ligustrum lucidum. The Scientific World Journal, 2015, 2015, 935942. | |
| Yan L , Zhu J , Zhao X , et al. Beneficial effects of endophytic fungi colonization on plants. Applied Microbiology and Biotechnology, 2019, 103, 3327- 3340. | |
| Zarraonaindia I ,  Owens S M ,  Weisenhorn P , et al.  The soil microbiome influences grapevine-associated microbiota. mBio, 2015, 6 (2): e02527-14. doi: 10.1128/mBio.02527-14 | |
| Zhou J ,  Zhang Z ,  Zhang Y , et al.  Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings. PLoS One, 2018, 13 (3): e0191139. doi: 10.1371/journal.pone.0191139 | |
| Zhou L L ,  Li X P ,  Kotta-Loizou I , et al.  A mycovirus modulates the endophytic and pathogenic traits of a plant associated fungus. The ISME Journal, 2021, 15, 1893- 1906. doi: 10.1038/s41396-021-00892-3 | 
| [1] | 王立祥, 崔树鹏, 孔露露, 王萱, 杨宗基, 任利利, 骆有庆. 内生真菌对新渡户树蜂共生真菌的抑制作用[J]. 林业科学, 2022, 58(5): 113-120. | 
| [2] | 贾斐然,周忠福,赵文霞,孙荟荃,姚艳霞. 苹小吉丁自然种群肠道微生物多样性[J]. 林业科学, 2022, 58(3): 86-96. | 
| [3] | 丛微,于晶晶,喻海茫,丁易,张于光. 不同气候带森林土壤微生物多样性和群落构建特征[J]. 林业科学, 2022, 58(2): 70-79. | 
| [4] | 赵鹏宇,白雪,燕平梅,赵晓东,武晓英,柴宝峰. 华北落叶松林土壤细菌群落结构与表型的环境异质性响应[J]. 林业科学, 2021, 57(7): 101-110. | 
| [5] | 张燕林,黄彩凤,包明琢,周垂帆,何宗明. 生物炭及其老化对杉木林土壤养分含量和微生物群落组成影响的室内模拟[J]. 林业科学, 2021, 57(6): 169-179. | 
| [6] | 龚金玉,彭金根,谢利娟,张银凤,李朝婵,王艳梅. 深圳梧桐山不同树势毛棉杜鹃根际土壤微生物多样性分析[J]. 林业科学, 2021, 57(11): 190-200. | 
| [7] | 庞荣荣,彭潔莹,闫琰. 太白山次生锐齿栎林地上生物量影响因素[J]. 林业科学, 2021, 57(10): 157-165. | 
| [8] | 谢宪, 梁军, 朱彦鹏, 胡瑞瑞, 程元, 张星耀. 赤松纯林不同松枯梢病病级针叶的内生真菌多样性及群落结构[J]. 林业科学, 2020, 56(9): 51-57. | 
| [9] | 赵晓红,柴姗姗,张曼曼,范义昌,毛云飞,毛志泉,沈向. 施用贝壳粉对酸化土壤微生物多样性及平邑甜茶幼苗生长的影响[J]. 林业科学, 2020, 56(9): 153-163. | 
| [10] | 周晓君,张凯,彭正锋,孙姗姗,押辉远,张延召,程彦伟. 矮牡丹与芍药属其他5个种叶绿体基因组特征的比较[J]. 林业科学, 2020, 56(4): 82-88. | 
| [11] | 刘昌霖,周国英,肖柏,刘君昂. 降香黄檀心材和边材内生真菌多样性[J]. 林业科学, 2020, 56(4): 109-120. | 
| [12] | 靳微,杨预展,孙海菁,陈连庆,袁志林. 弗吉尼亚栎母树林外生菌根的真菌多样性[J]. 林业科学, 2020, 56(1): 120-132. | 
| [13] | 王安宁, 黄秋娴, 李晓刚, 徐学华, 李玉灵. 冀北山区不同植被恢复类型根际土壤细菌群落结构及多样性[J]. 林业科学, 2019, 55(9): 130-141. | 
| [14] | 陈秀波, 朱德全, 赵晨晨, 张路路, 陈立新, 段文标. 凉水国家自然保护区不同林型红松林土壤nosZ型反硝化微生物群落组成和多样性分析[J]. 林业科学, 2019, 55(8): 106-117. | 
| [15] | 曹红雨, 高广磊, 丁国栋, 张英, 赵媛媛, 任悦, 陈宇轩, 郭米山. 呼伦贝尔沙区4种生境土壤真菌群落结构和多样性[J]. 林业科学, 2019, 55(8): 118-127. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||