陈春雷, 武刚. 2011. 面向对象的遥感影像最优分割尺度评价. 遥感技术与应用, 26(1):96-102. (Chen C L, Wu G. 2011. Evaluation of optimal segmentation scale with object-oriented method in remote sensing. Remote Sensing Technology and Application, 26(1):96-102.[in Chinese]) 承继成, 郭华东, 史文中. 2004. 遥感数据的不确定性问题. 北京:科学出版社,5-37. (Cheng J C, Guo H D, Shi W Z. 2004. The study of uncertainties in datas of remote sensing. Beijing:Science Press, 5-37.[in Chinese]) 方涛, 霍宏, 马贺平, 等. 2016. 高分辨率遥感影像智能解译. 北京:科学出版社, 83-88. (Fang T, Huo H, Ma H P, et al.2016. Intelligent interpretation of high-resolution remote sensing image. Beijing:Science Press,83-88.[in Chinese]) 何敏, 张文君, 王卫红. 2009. 面向对象的最优分割尺度计算模型. 大地测量与地球动力学, (1):106-109. (He M, Zhang W J, Wang W H.2009. Optimal segmentation scale model based on object-oriented analysis method. Journal of Geodesy and Geodynamics, (1):106-109.[in Chinese]) 黄慧萍. 2003. 面向对象影像分析中的尺度问题研究. 北京:中国科学院研究生院博士学位论文. (Huang H P. 2003. Scale issues in object-oriented image analysis. Beijing:PhD thesis of Chinese Academy of Sciences.[in Chinese]) 马浩然. 2014. 基于多层次分割的遥感影像面向对象森林分类. 北京:北京林业大学硕士学位论文. (Ma H R. 2014. Object-based remote sensing image classification of forest based on multi-level segmentation. Beijing:MS thesis of Beijing Forestry University.[in Chinese]) 毛学刚, 陈文曲, 魏晶昱, 等. 2017.分割尺度对面向对象树种分类的影响及评价. 林业科学, 53(12):106-109. (Mao X G, Chen W Q, Wei J Y, et al. 2017. Effect and evaluation of segmentation scale on object-based forest species classification. Scientia Silvae Sinicae, 53(12):106-109.[in Chinese]) 李文华, 李飞. 1996. 中国森林资源研究. 北京:中国林业出版社. (Li W H, Li F. 1996. China's forest resources research.Beijing:China Forestry Publishing House.[in Chinese]) 潘腾. 2015. 高分二号卫星的技术特点. 中国航天, (1):3-9. (Pan T. 2015. The technical features of GF-2 satellite.China Aerospace, (1):3-9.[in Chinese]) 任冲, 鞠洪波, 张怀清, 等. 2016. 多源数据林地类型的精细分类方法. 林业科学, 52(6):54-65. (Ren C, Ju H B, Zhang H Q,et al. 2016. Multi-source data for forest land type precise classification. Scientia Silvae Sinicae, 52(6):54-65.[in Chinese]) 孙晓艳, 杜华强, 韩凝, 等. 2013. 面向对象多尺度分割的SPOT5影像毛竹林专题信息提取. 林业科学, 49(10):81-87. (Sun X Y, Du H Q, Han N, et al.2013. Multi-scale segmentation,object-based extraction of moso bamboo forest from SPOT5 imagery. Scientia Silvae Sinicae,49(10):81-87.[in Chinese]) 田甜, 范文义, 卢伟, 等. 2015. 面向对象的优势树种类型信息提取技术. 应用生态学报, 26(6):1665-1672. (Tian T, Fan W Y, Lu W, et al. 2015. An object-based information extraction technology for dominant tree species group types. Chinese Journal of Applied Ecology, 26(6):1665-1672.[in Chinese]) 王敏, 李凤日, 王二丽, 等. 2011. 基于大比例尺航片的针叶树种分类. 东北林业大学学报, 39(11):117-121. (Wang M, Li F R, Wang E L, et al. 2011. Classification of coniferous species based on large-scale aerial photographs. Journal of Northeast Forestry University, 39(11):117-121.[in Chinese]) 王露, 刘庆元. 2015. 高分辨率遥感影像多尺度分割中最优尺度选取方法综述. 测绘与空间地理信息, 38(3):166-169. (Wang L, Liu Q Y. 2015. The methods summary of optimal segmentation scale selection in high-resolution remote sensing images multi-scale segmentation. Geomatics & Spatial Information Technology,38(3):166-169.[in Chinese]) 于欢, 张树清, 孔博, 等. 2010. 面向对象遥感影像分类的最优分割尺度选择研究. 中国图象图形学报, 15(2):352-360. (Yu H, Zhang S Q, Kong B, et al. 2010. Optimal segmentation scale selection for object-oriented remote sensing image classification. Journal of Image and Graphics, 15(2):352-360.[in Chinese]) 赵敏, 赵银娣. 2018. 面向对象的多特征分级CVA遥感影像变化检测. 遥感学报, 22(1):119-131. (Zhao M,Zhao Y D. 2018.Object-oriented and multi-feature hierarchical change detection based on CVA for high-resolution remote sensing imagery. Journal of Remote Sensing, 22(1):119-131.[in Chinese]) 朱红春, 蔡丽杰, 刘海英, 等. 2015. 高分辨率影像分类的最优分割尺度计算. 测绘科学, 40(3):71-75. (Zhu H C, Cai L J, Liu H Y, et al. 2015. Optimal segmentation scale calculation for high-resolution remote sensing image. Science of surveying and Mapping,40(3):71-75.[in Chinese]) 庄喜阳, 赵书河, 陈诚, 等. 2016.面向对象的遥感影像最优分割尺度监督评价. 国土资源遥感, 28(4):49-58. (Zhuang X Y, Zhao S H, Chen C, et al. 2016. Supervised evaluation of optimal segmentation scale with object-oriented method in remote sensing image. Remote Sensing for Land and Resources,28(4):49-58.[in Chinese]) Addink E A, De Jong S M, Pebesma E J. 2007. The importance of scale in object-based mapping of vegetation parameters with hyperspectral imagery. Photogrammetric Engineering & Remote Sensing, 73(8):905-912. Chen J Y, Pan D L, Mao Z H. 2009. Image-object detectable in multiscale analysis on high-resolution remotely sensed imagery. International Journal of Remote Sensing, 30(14):3585-3602. Drǎguţ L, Csillik O, Eisank C, et al. 2014. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS Journal of Photogrammetry and Remote Sensing, 88(100):119-127. Kanda F, Kubo M, Muramoto K. 2004. Watershed segmentation and classification of tree species using high resolution forest imagery. Proceedings. IEEE International, 3822-3825. Kim M, Madden M, Warner T. 2008. Estimation of optimal image object size for the segmentation of forest stands with multispectral IKONOS imagery//Object-based image analysis. Springer Berlin Heidelberg,291-307. Korpela I, Ørka H O, Maltamo M, et al. 2010. Tree species classification using airborne LiDAR-effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type. Silva Fennica, 44(2):319-339. Nigri H P, Ferreira R, Bentes C, et al. 2010. Multiresolution segmentation:a parallel approach for high resolution image segmentation in multicore architectures. The International Archives of The Photogrammetry & Remote Sensing and Spatial Information Sciences,Vol.XXXVIII-4/C7. Woodcock C E, Strahler A H. 1987. The factor of scale in remote sensing. Remote Sensing of Environment, 21(3):311-332. Yang J, He Y H, Weng Q H. 2015. An automated method to parameterize segmentation scale by enhancing intrasegment homogeneity and intersegment heterogeneity. IEEE Geoscience & Remote Sensing Letters, 12(6):1282-1286. |