欢迎访问林业科学,今天是

林业科学 ›› 2019, Vol. 55 ›› Issue (11): 95-104.doi: 10.11707/j.1001-7488.20191111

• 论文与研究报告 • 上一篇    下一篇

高分影像树种分类的最优分割尺度确定方法

刘金丽1, 陈钊1, 高金萍2, 高显连2, 孙忠秋2   

  1. 1. 北京林业大学 北京 100083;
    2. 国家林业和草原局调查规划设计院 北京 100714
  • 收稿日期:2018-07-09 修回日期:2019-05-12 出版日期:2019-11-25 发布日期:2019-12-21
  • 基金资助:
    国家高技术研究发展计划(863计划)(2012AA12A306);高分辨率对地观测系统重大专项(民用部分)科研项目(30-Y20A37-9003-15/17);重点国有林区森林资源规划设计调查与森林经营方案编制——重点国有林区森林资源规划设计调查(二类平台)(2130207)。

Research on the Method of Determining the Optimal Segmentation Scale for Tree Species Classification of High-Resolution Image

Liu Jinli1, Chen Zhao1, Gao Jinping2, Gao Xianlian2, Sun Zhongqiu2   

  1. 1. Beijing Forestry University Beijing 100083;
    2. Academy of Forest Inventory and Planning, National Forestry and Grassland Administration Beijing 100714
  • Received:2018-07-09 Revised:2019-05-12 Online:2019-11-25 Published:2019-12-21

摘要: [目的] 研究面向对象树种分类过程中多尺度分割算法参数组合确定方法,寻找替代传统依赖于参考多边形的最优分割尺度评价方式,并对ESP2工具所得最优分割尺度对树种分类的适宜性做出定量评价。[方法] 以黑龙江省伊春市桦皮羌子林场为研究区,基于GF-2遥感影像数据,开展面向对象分类的分割试验。利用ESP2工具找出固定尺度范围内(100~400,步长为1)同质性局部方差变化率随分割尺度变化曲线中明显峰值所对应的分割尺度,将其定义为最优分割尺度范围。执行最佳同质性准则组合参数配合下最优分割尺度范围内各尺度的多尺度分割,统计树种样本点对在各分割结果中的分布情况并记录分割时间,通过对比树种样本点对正确落入相邻对象比和分割时长来确定最优分割尺度。[结果] 相同尺度下的同质性准则组合参数试验表明,当组合两因子参数分别为shape=0.5、compactness=0.3时,其分割效果相对最好。基于树种样本点对的分割结果评价表明,树种样本点对正确落入比最高时对应的分割尺度参数为259,210对相异相邻树种样本点对中共有203对样本点正确落入相邻分割对象中。最优分割尺度范围内各分割结果的矢量距离指数和ED3modified指数表明,其评价结果与基于树种样本点对的评价结果相吻合。[结论] 不同同质性准则组合参数对分割结果的影响具有明显差异,设计高效的试验方案寻找该组合十分必要。基于树种样本的评价方法充分利用地面调查数据,将以往评价中常用的多边形样本简化为点样本,可避免人工勾画真实地物边界的繁杂工作量。将分割效率考虑在内的最优分割尺度评价点指数方法与基于对象匹配法或面积相近原理的评价方法相比,可提高操作上的简易性和评价因素的全面性。

关键词: 最优分割参数, 面向对象, 树种分类, GF-2

Abstract: [Objective] This paper studies the method of determining the segmentation parameters for multiresolution segmentation algorithm in the process of object-oriented tree species classification. This paper seeks to replace the traditional optimal segmentation scale evaluation method that relies on the reference polygons, and quantitatively evaluates the suitability of the optimal segmentation scales proposed by the ESP2 tool for tree species classification.[Method] The segmentation experiment of object-oriented classification is carried out, taking the Huapiqiangzi forest farm in Yichun city, Heilongjiang Province as the study area, with the GF-2 remote sensing image used as the experimental data. Based on the idea of local variance(LV)of object heterogeneity within a scene reflects the optimal segmentation scale, scales are found corresponding to obvious peaks of the homogenous local variance variation rate in the specific scale range(100-400, step size is 1)generated by ESP2, which is defined as the optimal segmentation scale range. Finally, the multiresolution segmentation at each scale in the optimal segmentation scale range is performed with the optimal composition of homogeneity criterion parameters. The distribution of the tree species sample points in each segmentation results is counted, and the segmentation time is recorded. The optimal segmentation scale is determined by comparing the ratio of the sample points of tree species to the correct distribution and the segmentation time.[Result] The segmentation experiment under the same scale parameter of multiresolution segmentation algorithm shows that when the composition of homogeneity criterion parameters are shape=0.5 and compactness=0.3, the segmentation result is relatively the best. The segmentation evaluation method based on tree species sample point pairs shows that among all the segmentation results of the experiment, the scale parameter corresponding to the largest ratio of the sample points of tree species to the correct distribution is 259. Totally, 203 of 210 pairs adjacent tree species sample points fall into the adjacent segmentation objects. The vector distance index and the ED3modified in the optimal segmentation scale range are calculated. The results show that the evaluation results are consistent with the evaluation results based on the pair of tree species. The vector distance index and the ED3modified of segmentation result for each scale in the optimal segmentation scale range are calculated. The results shows that the evaluation result are consistent with the evaluation result based on the tree species sample points.[Conclusion] The influences of different composition of homogeneity criterion parameters on the segmentation results are significantly different. It is necessary to design an efficient experimental scheme to find this combination.The evaluation method based on tree species samples points makes full use of the tree species survey data, and simplifies the reference polygon samples commonly used in previous evaluations into point samples, which avoids the complicated workload of manually delineating real object boundaries.Compared with the object matching method or the similarity principle of the area principle,the point index of optimal segmentation scale evaluation method considering the segmentation efficiency could improve the comprehensiveness of the segmentation factors.

Key words: optimal segmentation parameters, object-oriented classification, tree species classification, GF-2

中图分类号: