林元震, 陈晓阳. 2014. R与ASReml-R统计分析教程. 北京:中国林业出版社. (Lin Y Z, Chen X Y. 2014. R & ASReml-R statistical analysis tutorial. Beijing:China Forestry Publishing House.[in Chinese]) 刘青华, 张蕊, 金国庆, 等. 2010. 马尾松年轮宽度和木材基本密度的种源变异及早期选择. 林业科学, 46(5):49-54. (Liu Q H, Zhang R, Jin G Q, et al. 2010. Variation of ring width and wood basic density and early selection of Pinus massoniana provenances. Scientia Silvae Sinicae, 46(5):49-54.[in Chinese]) 栾启福, 卢萍, 井振华, 等. 2011. Pilodyn评估杂交松活立木的基本密度及其性状相关分析. 江西农业大学学报, 33(3):548-552. (Luan Q F, Lu P, Jing Z H, et al. 2011. Assessment of wood basic density for standing trees of hybrid pines by Pilodyn and the correlation analysis of several traits. Acta Agriculturae Universitatis Jiangxiensis, 33(3):548-552.[in Chinese]) 骆秀琴, 姜笑梅, 殷亚方, 等. 2003. 湿地松15个家系木材材性遗传变异及优良家系评估. 林业科学研究, 16(6):694-699. (Luo X Q, Jiang X M, Yin Y F, et al. 2003. Genetic variation and comprehensive assessment in wood properties of 15 families of Pinus elliottii. Forest Research, 16(6):694-699.[in Chinese]) 马育华. 1982. 植物育种的数量遗传学基础. 南京:江苏科学技术出版社. (Ma Y H. 1982. Quantitative genetics for plant breeding. Nanjing:Jiangsu Science and Technology Publishing House.[in Chinese]) 宋云民, 黄铨, 黄永利. 1995. 湿地松家系生长和材性遗传变异分析. 林业科学研究, 8(6):671-676. (Song Y M, Huang Q, Huang Y L. 1995. Genetic variation analysis of growth and wood properties of slash pine on the family level. Forest Research, 8(6):671-676.[in Chinese]) 王莉娟. 2005. 无损检测方法评估人工林杨树木材性质的研究. 北京:北京林业大学硕士学位论文. (Wang L J. 2005. Study on evaluating wood properties of poplar plantation using non-destructive testing methods. Beijing:MS thesis of Beijing Forestry University.[in Chinese]) 吴际友, 龙应忠, 余格非, 等. 2000. 湿地松半同胞家系主要经济性状的遗传分析及联合选择. 林业科学, 36(4):56-61. (Wu J Y, Long Y Z, Yu G F, et al. 2000. Genetic analysis and combined selection of main economic characters of half-sib families for slash pine. Scientia Silvae Sinicae, 36(4):56-61.[in Chinese]) 徐有明, 鲍春红, 周志翔, 等. 2001. 湿地松种源生长量、材性的变异与优良种源综合选择. 东北林业大学学报, 29(5):18-21. (Xu Y M, Bao C H, Zhou Z X, et al. 2001. Variation analyses of tree growth and wood properties among slash pine provenances and comprehensive selection of superior provenance. Journal of Northeast Forestry University, 29(5):18-21.[in Chinese]) 张帅楠, 栾启福, 姜景民. 2017. 基于无损检测技术的湿地松生长及材性性状遗传变异分析. 林业科学, 53(6):30-36. (Zhang S N, Luan Q F, Jiang J M. 2017. Genetic variation analysis for growth and wood properties of slash pine based on the non-destructive testing technologies. Scientia Silvae Sinicae, 53(6):30-36.[in Chinese]) Bouffier L, Charlot C, Raffin A, et al. 2008. Can wood density be efficiently selected at early stage in maritime pine (Pinus pinaster Ait.)?. Annals of Forest Science, 65(1):106. Chen Z, Karlsson B, Lundqvist S O, et al. 2015. Estimating solid wood properties using Pilodyn and acoustic velocity on standing trees of Norway spruce. Annals of Forest Science, 72(4):1-10. Gantz C H. 2002. Evaluating efficiency of the resistograph to estimate genetic parameters for wood density in two softwood and two hardwood species. North Carolina:MS thesis of North Carolina State University. Gao S, Wang X, Brashaw B K, et al. 2012. Rapid assessment of wood density of standing tree with nondestructive methods-A review//International Conference on Biobase Material Science and Engineering. IEEE:262-267. Hodge G R, Purnell R C. 1993. Genetic parameter estimates for wood density, transition age, and radial growth in slash pine. Canadian Journal of Forest Research, 23(9):1881-1891. Isik F, Li B. 2003. Rapid assessment of wood density of live trees using the Resistograph for selection in tree improvement programs. Canadian Journal of Forest Research, 33(12):2426-2435. Kimberley M O, Moore J R, Dungey H S. 2016. Modelling the effects of genetic improvement on radiata pine wood density. New Zealand Journal of Forestry Science, 46(1):8. Lenz P, Auty D, Achim A, et al. 2013. Genetic improvement of white spruce mechanical wood traits-early screening by means of acoustic velocity. Forests, 4(3):575-594. Li L, Wu H X. 2005. Efficiency of early selection for rotation-aged growth and wood density traits in Pinus radiata. Canadian Journal of Forest Research, 35(8):2019-2029. Lynch M, Walsh B. 1998. Genetics and analysis of quantitative traits. Sunderland:Sinauer Associates, Inc. Mora C R, Schimleck L R, Isik F, et al. 2009. Relationships between acoustic variables and different measures of stiffness in standing Pinus taeda trees. Canadian Journal of Forest Research, 39(8):1421-1429. Pswaray I Z, Barnes R D, Birks J S, et al. 1996. Genetic parameter estimates for production and quality traits of Pinus elliottii Engelm. var. elliottii in Zimbabwe. Silvae Genetica, 45(4):216-222. Smith D M. 1954. Maximum moisture content method for determining specific gravity of small wood samples. Report No. 2014, Forest Products Laboratory, Forest Service, US Department of Agriculture. Sprague J R, Talbert J T, Jett J B, et al. 1984. Utility of the Pilodyn in selection for mature wood specific gravity in loblolly pine. Forest Science, 29(4):696-701. White T L, Adams W T, Neale D B. 2007. Forest genetics. Wallingford:Oxford University Press, 113-148. Wu H X, Ivkovi Dć M, Gapare W J, et al. 2008. Breeding for wood quality and profit in Pinus radiata:a review of genetic parameter estimates and implications for breeding and deployment. New Zealand Journal of Forestry Science, 38(1):56-87. Zobel B J, Van Buijtenen J P. 1989.Wood variation:its causes and control.Berlin:Springer Science & Business Media. |