江泽慧,余雁,费本华,等. 2004.纳米压痕技术测量管胞次生壁S2层的纵向弹性模量和硬度.林业科学, 40(2):113-118. (Jiang Z H, Yu Y, Fei B H, et al. 2004. Using nanoindentation technique to determine the longitudinal elastic modulus and hardness of tracheids secondary wall. Scientia Silvae Sinicae, 40(2):113-118.[in Chinese]) 连海兰,潘明珠. 2012.生物质复合材料的表界面.北京:中国林业出版社, 165-170. (Lian H L, Pan M Z. 2012. Table interface of biomass composite. Beijing:China Forestry Publishing House.[in Chinese]) 林兰英,秦理哲,傅峰. 2015.微观力学表征技术的发展及其在木材科学领域中的应用.林业科学, 51(2):121-128. (Lin L Y, Qin L Z, Fu F. 2015. Development of micromechanical technique and application on wood science. Scientia Silvae Sinicae, 51(2):121-128.[in Chinese]) 詹天翼,吕建雄,张海洋,等. 2017.水分解吸过程中杉木黏弹行为的经时变化规律及其频率依存性研究.林业科学, 53(8):155-162. (Zhan T Y, Lü J X, Zhang H Y, et al. 2017. Changes of time dependent viscoelasticity of Chinese fir wood and its frequency-dependency during moisture desorption processes. Scientia Silvae Sinicae, 53(8):155-162.[in Chinese]) Chakravartula A, Komvopoulos K. 2006. Viscoelastic properties of polymer surfaces investigated by nanoscale dynamic mechanical analysis. Applied Physics Letters, doi:10.1063/1.2189165. Eftekhari M, Fatemi A. 2016. Creep behavior and modeling of neat, talc-filled, and short glass fiber reinforced thermoplastics. Composites Part B:Engineering, 97:68-83. Findley W N, Lai J S, Onaran K. 1977. Creep and relaxation of nonlinear viscoelastic materials. Journal of Applied Mechanics, 44(2):505-509. Furuta Y, Obata Y, Kanayama K. 2001. Thermal-softening properties of water-swollen wood:The ralaxation process due to water soluble polysaccharides. Journal of Materials Science, 36(4):887-890. Jesson D A, Watts J F. 2012. The interface and inerphase in polymer matrix composites:effect on mechanical properties and methods for identification. Polymer Reviews, 52(3/4):321-354. Konnerth J, Gindl W. 2006. Mechanical characterisation of wood-adhesive interphase cell walls by nanoindentation. Holzforschung, 60(4):429-433. Lee S, Wang S, Pharr G M, et al. 2007. Evaluation of interphase properties in a cellulose fiber-reinforced polypropylene composite by nanoindentation and finite element analysis. Composites Part A:Applied Science and Manufacturing, 38(6):1517-1524. Li Y J, Yin L P, Huang C J, et al. 2015. Quasi-static and dynamic nanoindentation to determine the influence of thermal treatment on the mechanical properties of bamboo cell walls. Holzforschung, 69(7):909-914. Meng Y J, Xia Y Z, Young T M, et al. 2015. Viscoelasticity of wood cell walls with different moisture content as measured by nanoindentation. RSC Advances, 5(59):47538-47547. Oliver W C, Pharr G M. 1992. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6):1564-1583. Pethica J B, Oliver W C. 1989. Mechanical properties of nanometer volumes of material:use of the elastic response of small area indentation. MRS Online Proceeding Library Archive, 130 (Suppl 1):903-905. Qin L Z, Lin L Y, Fu F, et al. 2018. Micromechanical properties of wood cell wall and interface compound middle lamella using quasistatic nanoindentation and dynamic modulus mapping. Journal of Materials Science, 53(1):549-558. Salmén L, Stevanic J S, Olsson A M. 2016. Contribution of lignin to the strength properties in wood fibres studied by dynamic FTIR spectroscopy and dynamic mechanical analysis (DMA). Holzforschung, 70(12):1155-1163. Schiffmann K I, Brill C. 2006. Nanoindentation creep and stress relaxation tests of polycarbonate:analysis of viscoelastic properties by different rheological models. Zeitschrift für Melallkunde, 97:1199-1211. Wang B, Fancey K S. 2017. Application of time-stress superposition to viscoelastic behavior of polyamide 6, 6 fiber and its "true" elastic modulus. Journal of Applied Polymer Science, dio:10.1002/app.4491. Wang X Z, Deng Y H, Wang S Q, et al. 2013. Nanoscale characterization of reed stalk fiber cell walls. BioResources, 8(2):1986-1996. Wang X Z, Deng Y H, Li Y J, et al. 2016. In situ identification of the molecular-scale interactions of phenol-formaldehyde resin and wood cell walls using infrared nanospectroscopy. RSC Advances, 6(80):76318-76324. Wimmer R, Lucas B N. 1997. Comparing mechanical properties of secondary wall and cell corner middle lamella in spruce wood. IAWA Journal, 18(1):77-88. Xing C, Zhang S Y, Deng J, et al. 2007. Urea-formaldehyde-resin gel time as affected by the pH value, solid content, and catalyst. Journal of Applied Polymer Science, 103(3):1566-1569. Yu Y, Fei B H, Zhang B, et al. 2007. Cell-wall mechanical properties of bamboo investigated by in-situ imaging nanoindentation. Wood Science and Technology, 39(4):527-535. Yu Y, Tian G L, Wang H K, et al. 2010. Mechanical characterization of single bamboo fibers with nanoindentation and microtensile technique. Holzforschung, 65(1):113-119. Zhang T, Bai S L, Zhang Y F, et al. 2012. Viscoelastic properties of wood materials characterized by nanoindentation experiments. Wood Science and Technology, 46(5):1003-1016. Zhou J, Komvopoulos K, 2007. Interfacial viscoelasticity of thin polymer films studied by nanoscale dynamic mechanical analysis. Applied Physics Letters, 90(2):21910-21913. |