董利虎, 张连军, 李凤日. 2015. 立木生物量模型的误差结构和可加性. 林业科学, 51 (2):28-36. (Dong L H, Zhang L J, Li F R. 2015. Error structure and additivity of individual tree biomass model. Scientia Silvae Sinicae, 51(2):28-36.[in Chinese]) 姜立春, 张 锐, 李凤日. 2012a. 基于线性混合模型的落叶松枝条长度和角度模型. 林业科学, 48(5):53-60. (Jiang L C, Zhang R, Li F R. 2012a. Modeling branch length and branch angle with linear mixed effects for dahurian larch. Scientia Silvae Sinicae, 48(5):53-60.[in Chinese]) 姜立春, 李凤日, 张 锐. 2012b. 基于线性混合模型的落叶松枝条基径模型. 林业科学研究, 25(4):464-469. (Jiang L C, Li F R, Zhang R. 2012b. Modeling branch diameter with linear mixed effects for dahurian larch. Forest Research, 25(4):464-469.[in Chinese]) 中华人民共和国林业部.1990.林业专业调查主要技术规定.北京:中国林业出版社. (Forestry Ministry of China.1990.Major specifications on specialized forestry surveys. Beijing:China Forestry Publishing House.[in Chinese]) Ballantyne F. 2013. Evaluating model fit to determine if logarithmic transformations are necessary in allometry:a comment on the exchange between Packard (2009) and Kerkhoff and Enquist (2009). Journal of Theoretical Biology, 317(1):418-421. Brooks J R, Wiant H V. 2008. Ecoregion-based local volume equations for appalachian hardwoods. Northern Journal of Applied Forestry, 25(2):87-92. Budhathoki C B, Lynch T B, Guldin J M. 2008. Nonlinear mixed modeling of basal area growth for shortleaf pine. Forest Ecology & Management, 255(8):3440-3446. Burnham K P, Anderson D R. 2002. Model selection and multimodel inference a practical information-theoretic approach. Springer Verlag. Caruso T, Garlaschelli D, Bargagli R, et al. 2010.Testing metabolic scaling theory using intraspecific allometries in Antarctic microarthropods. Oikos, 119(6):935-945. Case B S, Hall R J. 2008. Assessing prediction errors of generalized tree biomass and volume equations for the boreal forest region of west-central Canada. Canadian Journal of Forest Research, 38(4):878-889. Cawley G C, Janacek G J. 2010. On allometric equations for predicting body mass of dinosaurs. Journal of Zoology, 280(4):355-361. Dong L H, Zhang L J, Li F R. 2014. A compatible system of biomass equations for three conifer species in Northeast, China. Forest Ecology & Management, 329:306-317. Dong L H, Zhang L J, Li F R. 2015. A three-step proportional weighting system of nonlinear biomass equations. Forest Science, 61(1):35-45. Fang Z, Bailey R L. 2001. Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments. Forest Science, 47(3):287-300. Fattorini S. 2007. To fit or not to fit? A poorly fitting procedure produces inconsistent results when the species-area relationship is used to locate hotspots. Biodiversity and Conservation, 16(9):2531-2538. Fowler G W. 1997. Individual tree volume equations for red pine in michigan. Northern Journal of Applied Forestry, 14(2):53-58. Gingerich P D. 2000. Arithmetic or geometric normality of biological variation:an empirical test of theory. Journal of Theoretical Biology, 204(2):201-221. Glazier D S. 2013. Log-transformation is useful for examining proportional relationships in allometric scaling. Journal of Theoretical Biology, 334(19):200-203. Hayes J P, Shonkwiler J S. 2006. Allometry, antilog transformations, and the perils of prediction on the original scale. Electroencephalography & Clinical Neurophysiology, 79(3):665-674. Kerkhoff A J, Enquist B J. 2009. Multiplicative by nature:why logarithmic transformation is necessary in allometry. Journal of Theoretical Biology, 257(3):519-521. Lai J S, Yang B, Lin D M, et al. 2013. The allometry of coarse root biomass:log-transformed linear regression or nonlinear regression? Plos One, 8(10):e77007-e77007. Mäkelä A, Sievänen R, Lindner M, et al. 2000. Application of volume growth and survival graphs in the evaluation of four process-based forest growth models. Tree Physiology, 20(5/6):347-355. Mason E, Sewell A C, Evison D. 2012. Validation of an individual-tree volume equation for Nothofagus menziesii (Hook f.) Oerst in Southland, New Zealand. New Zealand Journal of Forestry Science, 42:25-28. Osbourne J W. 2002. Notes on the use of data transformation. Practical Assessment Research & Evaluation, 8(6):1-7. Packard G C, Boardman T J. 2008a. Model selection and logarithmic transformation in allometric analysis. Physiological & Biochemical Zoology, 81(4):496-507. Packard G C, Birchard G F. 2008b. Traditional allometric analysis fails to provide a valid predictive model for mammalian metabolic rates. Journal of Experimental Biology, 211:3581-3587. Packard G C. 2009. On the use of logarithmic transformations in allometric analyses. Journal of Theoretical Biology, 257(3):515-518. Packard G C, Boardman T J, Birchard G F. 2010. Allometric equations forpredicting body mass of dinosaurs:a comment on Cawley & Janacek (2010). Journal of Zoology, 282:221-222. Pan J, Mackenzie G. 2003. On modelling mean-covariance structures in longitudinal studies. Biometrika, 90(1):239-244. Pinheiro J C, Bates D M. 2000. Mixed-effects models in S and S-PLUS. Springer New York. Smith R J. 1993. Logarithmic transformation bias in allometry. American Journal of Physical Anthropology, 90(2):215-228. Snorrason A, Einarsson S F. 2006. Single-tree biomass and stem volume functions for eleven tree species used in Icelandic forestry. Icelandic Agricultural Sciences, 19:15-24. Uzoh F C C, Oliver W W. 2008. Individual tree diameter increment model for managed even-aged stands of ponderosa pine throughout the western United States using a multilevel linear mixed effects model. Forest Ecology & Management, 256(3):438-445. Wang Y G, Hin L Y. 2010. Modeling strategies in longitudinal data analysis:covariate, variance function and correlation structure selection. Computational Statistics & Data Analysis, 54(12):3359-3370. Wang Y G, Lin X. 2005. Effects of variance-function misspecification in analysis of longitudinal data. Biometrics, 61(2):413-421. Warton D I, Wright I J, Falster D S, et al. 2006. Bivariate line-fitting methods for allometry. Biological Reviews of the Cambridge Philosophical Society, 81(2):259-291. Xiao X, White E P, Hooten M B, et al. 2011. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology, 92(10):1887-1894. Xia Z S, Zeng W S, Zhu S, et al. 2013. Construction of tree volume equations for Chinese fir plantations in Guizhou Province, southwestern China. Journal of Beijing Forestry University, 15(3):179-185. |