欢迎访问林业科学,今天是

林业科学 ›› 2018, Vol. 54 ›› Issue (8): 13-22.doi: 10.11707/j.1001-7488.20180802

• 论文与研究报告 • 上一篇    下一篇

基塘系统不同竹林土壤CO2通量特征及其影响因子

李伟成1,2, 盛海燕3, 蒋跃平4, 温星1   

  1. 1. 国家林业局竹子研究开发中心 浙江省竹子高效加工重点实验室 杭州 310012;
    2. 西南林业大学生命科学学院 昆明 650224;
    3. 杭州环境保护科学研究院 杭州 310005;
    4. 杭州西溪国家湿地公园生态研究中心 杭州 310030
  • 收稿日期:2016-11-09 修回日期:2018-06-28 出版日期:2018-08-25 发布日期:2018-08-18
  • 基金资助:
    中央级公益性科研院所基本科研业务费专项(CAFYBB2017MA024)。

Soil CO2 Flux and Its Influence Factors of Different Bamboo Plantations in the Dike-Pond Ecosystem

Li Weicheng1,2, Sheng Haiyan3, Jiang Yueping4, Wen Xing1   

  1. 1. Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province China National Bamboo Research Center Hangzhou 310012;
    2. College of Life Sciences, Southwest Forestry University Kunming 650224;
    3. Hangzhou Environmental Protection Science Institute Hangzhou 310005;
    4. Hangzhou Xixi National Wetland Park Research Center for Ecological Science Hangzhou 310030
  • Received:2016-11-09 Revised:2018-06-28 Online:2018-08-25 Published:2018-08-18

摘要: [目的]探讨受保护状态下的杭州西溪湿地基塘系统不同类型竹林土壤CO2通量特征,为基塘湿地生态系统温室气体估算和碳氮循环研究提供科学依据。[方法]采用静态密闭箱-气相色谱法测定西溪国家湿地公园保护区内毛竹林和早竹林的土壤CO2通量,蒸馏水浸提法与TOC-VcpH测定土壤水溶性碳氮(WSOC和WSON)含量,氯仿熏蒸-K2SO4提取法测定土壤微生物生物量碳氮(MBC和MBN)含量。[结果]2种竹林土壤CO2通量差异明显,毛竹林土壤CO2通量较高,全年各月土壤CO2通量为(127.4±24.1)~(537.2±41.1) mg·m-2h-1,早竹林土壤CO2通量为(2.1±0.6)~(120.0±22.9) mg·m-2h-1;毛竹林与早竹林全年土壤CO2累积排放量分别为3 366.3和558.4 g·m-2a-1,毛竹林土壤CO2年累积排放量是早竹林的6倍;2种竹林土壤CO2通量与10 cm深处土壤层温度、土壤含水量呈线性相关;毛竹林与早竹林的土壤水溶性碳含量均在8月达到最大值,分别为(348.1±25.5)和(146.1±9.9) mg·kg-1,均在10和12月出现最低值,分别为(202.5±28.5)和(54.9±13.8) mg·kg-1,土壤水溶性氮含量在2种竹林中都没有表现出特殊规律,年度波动较大;毛竹林与早竹林土壤微生物生物量碳含量峰值出现在6月,分别为(279.0±17.6)和(313.9±38.6) mg·kg-1,2—4月出现最低值,分别为(219.7±13.8)和(198.7±12.8) mg·kg-1,毛竹林各月土壤微生物生物量氮含量为(21.4±3.8)~(43.7±4.2) mg·kg-1,早竹林各月土壤MBN含量的波动范围比毛竹林大,为(13.9±1.4)~(57.0±10.8) mg·kg-1;2种竹林土壤CO2通量与土壤水溶性碳含量显著正相关(P<0.05),与其他参数间相关性均不显著。[结论]西溪湿地基塘系统不同类型竹林土壤CO2通量具有强烈的时间异质性,其动态受季节性水热条件和呼吸底物土壤水溶性碳变化的共同调控。基塘系统封育有利于转变原先粗犷的开垦利用方式,可减少土壤水溶性碳含量和土壤CO2排放。

关键词: 毛竹, 早竹, 温室气体, 土壤水溶性碳氮, 土壤微生物生物量碳氮

Abstract: [Objective] Soil CO2 flux of different bamboo plantations was studied under conditions of the protected dike-pond ecosystem of Xixi National Wetland Park, Hangzhou. Additionally, we aimed to provide a scientific basis for the estimation of greenhouse gas fluxes and C and N cycling in the dike-pond wetland ecosystem.[Method] In Xixi National Wetland Park, the soil CO2 flux rates of two bamboo plantations:Phyllostachys edulis plantation and P. violascens plantation, were quantified using the static chamber-gas chromatograph technique every other month. In addition, soil samples were collected every other month to measure the soil water soluble carbon and nitrogen (WSOC and WSON) by using the distilled water dipping method with a TOC analyzer, and the soil microbial biomass carbon and nitrogen (MBC and MBN) by using the chloroform fumigation-K2SO4 extraction method. Soil temperature and soil water content were also measured. Thereafter, the relationships between soil CO2 flux and the measured soil chemical, biological, and physical characteristics were assessed.[Result] Soil CO2 flux significantly different between the two bamboo plantations. The soil CO2 flux rates of P. edulis plantation ranged from (127.4±24.1) to (537.2±41.1) mg·m-2h-1, with an annual cumulative CO2 emission 3 366.3 g·m-2a-1. Soil CO2 fluxes of the P. violascens plantation ranged from (2.1±0.6) to (112.0±22.9) mg·m-2h-1, with an annual cumulative emission of 558.4 g·m-2a-1. Thus, the soil CO2 flux of the P. edulis plantation was 6.0-fold greater than that of the P. violascens plantation. Soil CO2 fluxes of the two bamboo plantations significantly correlated with soil temperature (10 cm depth) and soil water contents. The WSOC concentrations of P. edulis and P. violascens plantations were the highest in August,(348.0±25.5) and (146.1±9.9) mg·kg-1, respectively, and the lowest in October and December (202.5±28.4) and (54.9±13.8) mg·kg-1, respectively. Specific pattern of the WSON concentrations in the two bamboo plantations were not shown, and the WSON annual fluctuation was greater. In both P. edulis and P. violascens plantations, the highest concentrations of MBC, (279.0±17.6) and (313.9±38.6) mg·kg-1, respectively, were measured in June, while the lowest concentrations (219.7±13.8 and 198.7±12.8, respectively) were measured from February to April. The annual fluctuation of MBN concentrations in P. edulis plantation ranged from (21.4±3.8) to (43.7±4.2) mg·kg-1, which was lower than the range of (13.9±1.4) to (57.0±10.8) mg·kg-1 in the P. violascens plantation. In both plantations, the CO2 flux significantly correlated with WSOC, but not with WSON, MBC, or MBN.[Conclusion] The soil CO2 flux of the dike-pond ecosystem in Xixi wetland had a temporal heterogeneity, which was largely controlled by the seasonal variations in temperature and moisture and the amount of WSOC, a respiratory substrate. Therefore, enclosure of the dike-pond ecosystem was favoralle to change the original rough model of land reclamation, and to reduce WSOC content and soil CO2 emissions.

Key words: Phyllostachys edulis, Phyllostachys violascens, greenhouse gas, soil water soluble C and N, soil microbial biomass C and N

中图分类号: