欢迎访问林业科学,今天是

林业科学 ›› 2017, Vol. 53 ›› Issue (5): 116-124.doi: 10.11707/j.1001-7488.20170514

• 论文与研究报告 • 上一篇    下一篇

纤维多孔缓冲包装材料泡孔参数与其力学性能的关系

罗瑜莹, 肖生苓, 李琛, 陈艳娜   

  1. 东北林业大学工程技术学院 哈尔滨 150040
  • 收稿日期:2016-01-21 修回日期:2016-04-27 出版日期:2017-05-25 发布日期:2017-06-22
  • 通讯作者: 肖生苓
  • 基金资助:
    中央高校基本科研业务费专项(2572016AB25);中央高校基本科研业务费专项(2572014CB09);国家林业公益行业科研专项(201304506)。

Relationships between Bubble Parameters and Mechanical Properties of Fiber Porous Cushioning Packaging Material

Luo Yuying, Xiao Shengling, Li Chen, Chen Yanna   

  1. College of Engineering and Technology, Northeast Forestry University Harbin 150040
  • Received:2016-01-21 Revised:2016-04-27 Online:2017-05-25 Published:2017-06-22

摘要: [目的] 借助适当的泡孔参数表征手段,探究纤维多孔缓冲包装材料的泡孔参数(孔隙率和孔径大小及分布)与其力学性能的关系,为制备出性能优良的纤维多孔缓冲包装材料提供理论依据,为进一步研究和揭示纤维多孔缓冲包装材料的发泡机制提供参考,以推动绿色环保缓冲包装材料的发展。[方法] 以木粉和废瓦楞纸浆为主要原料,同时添加发泡剂等辅料,采用热压成型方式制备出具有不同孔隙结构的发泡材料,使用Image Pro Plus 6.0图像处理软件对材料的显微图像进行处理与分析,得出不同材料的泡孔结构参数,即孔隙率和孔径大小及分布,通过静态压缩性能测试及4次压缩回弹测试得到材料的应力-应变曲线、缓冲系数-应力曲线、4次压缩平均回弹率曲线和单位体积变形能曲线,对材料泡孔结构参数与其力学性能的关系进行分析。[结果] 不同的泡孔参数与材料力学性能有着不同的关系,其中孔隙率与材料力学性能的关系为:孔隙率越大,材料的应力-应变曲线越平缓,最小缓冲系数越小,单位体积变形能越小;随着孔隙率的增大,材料的平均回弹率先升高后降低。孔径大小及分布与材料力学性能的关系为:大泡孔所占面积百分比越大,材料同一应变条件下对应的应力值越小,最小缓冲系数越小;大泡孔所占面积百分比越小,即孔径分布越均匀,材料的平均回弹率越高,单位体积变形能越大。[结论] 通过适当的泡孔参数表征手段及试验和统计方法,对纤维多孔缓冲包装材料微观泡孔结构参数(孔隙率和孔径大小及分布)进行表征,将宏观与微观相结合,获得其与不同孔隙结构材料力学性能间重要的理论关系,对于继续深入研究纤维多孔缓冲包装材料微观结构、优化泡孔形貌及均匀性甚至后续生产制备均具有重要的指导意义。

关键词: 缓冲包装, 纤维, 泡孔参数, 力学性能, 计算机图像分析

Abstract: [Objective] The purpose of this paper was to explore the relationships between the bubble parameters(porosity, pore size and distribution) and mechanical properties of fiber porous cushioning packaging materials though appropriate characterizing methods of bubble parameters. This study provided theoretical basis for the preparation of fiber porous cushioning packaging materials with excellent performance, and a reference for further study on the foaming mechanism of the materials. Moreover,it would promote the development of green cushion packaging material.[Method]Wood powder and waste corrugated paper pulp were used as main materials, while adding auxiliary materials such as foaming agent. Foamed materials with different pore structures were prepared through hot press molding method. Then the micro image of materials was analyzed by the image processing software called Image Pro Plus 6.0, the bubble parameters of different materials such as porosity, pore size and distribution were obtained. Through the static compression test and the four compression rebound test, the stress-strain curves, the buffer coefficient stress curve, the average rebound rate curve of the 4 times and the deformation energy per unit volume were obtained. Then, the relationships between the structural parameters and mechanical properties of porous materials were discussed.[Result]Different parameters (porosity, pore size and distribution) showed different relationships with the mechanical properties of the material. The relationships between porosity and mechanical properties of materials were as follows: The higher the porosity, the gentler the stress-strain curve, the lower the minimum buffer coefficient and the less the deformation energy per unit volume were observed. With the increase of porosity, the average rebound rate of the material exhibited increased first and then decreased trend. The relationships between pore size and distribution and the mechanical properties of the material were as follows: The larger the percentage of big hole area, the smaller the stress value of the material under the same strain and the minimum buffer coefficient were obtained. The smaller the percentage of big hole area, that was, the more uniform the pore size distribution was more uniform, the higher the average rebound rate, the bigger the deformation energy per unit volume were achieved.[Conclusion] Through appropriate characterizing, experimental and statistical methods, different parameters (porosity, pore size and distribution) of fiber porous cushioning packaging material were characterized. The relationships between mechanical properties and pore parameters of different pore structure materials were obtained. These findings had important implications for the in-depth study on micro-structure of fiber porous cushioning packaging material, optimizing the pore morphology and uniformity, and even following production and preparation.

Key words: cushioning package, fiber, bubble parameters, mechanical property, computer image analysis

中图分类号: