方前程,商 丽,商拥辉,等. 2017. 爆破振动诱发民房结构损伤识别的随机森林模型. 爆炸与冲击,37(6):939-945. (Fang Q C, Shang L, Shang Y H, et al. 2017. Random forest model for identification of residential structure damage induced by blast vibration. Explosion and Shock Waves, 37(6):939-945.[in Chinese]) 黄南天,彭 华,蔡国伟,等. 2017. 电能质量复合扰动特征选择与最优决策树构建. 中国电机工程学报,37(3):776-786. (Huang N T, Peng H, Cai G W, et al. 2017. Feature selection and optimal decision tree construction of complex power quality disturbances. Proceedings of the CSEE, 37(3):776-786.[in Chinese]) 李军锋,王钦若,李 敏. 2017. 结合深度学习和随机森林的电力设备图像识别. 高电压技术,43(11):3705-3711. (Li J F, Wang Q R, Li M. 2017. Electric equipment image recognition based on deep learning and random forest. High Voltage Engineering, 43(11):3705-3711.[in Chinese]) 戚大伟,牟洪波. 2013. 基于Hu不变矩和BP神经网络的木材缺陷检测. 东南大学学报:自然科学版,43(s1):63-66. (Qi D W, Mou H B, 2013. Detection of wood defects types based on Hu invariant moments and BP neural network. Journal of Southeast University:Natural Science Edition, 43(s1):63-66.[in Chinese]) 齐 巍,王立海. 2006. 基于小波神经网络的木材内部缺陷类型识别的研究. 林业科学,42(8):63-68. (Qi W, Wang L H. 2006. Identifying the patterns of defects in timber using ultrasonic test based on wavelet neural networks. Scientia Silvae Sinicae, 42(8):63-68.[in Chinese]) 王耀南,陈铁健,贺振东,等. 2015. 智能制造装备视觉检测控制方法综述. 控制理论与应用,32(3):273-286. (Wang Y N, Chen T J, He Z D, et al. 2015. Review on the machine vision measurement and control technology forintelligent manufacturing equipment. Control Theory & Applications, 32(3):273-286.[in Chinese]) 徐姗姗,刘应安,徐 昇. 2013. 基于卷积神经网络的木材缺陷识别. 山东大学学报:工学版,43(2):23-28. (Xu S S, Liu Y A, Xu S. 2013. Wood defects recognition based on the convolutional neural network. Journal of Shandong University:Engineering Science, 43(2):23-28.[in Chinese]) 张 召,业 宁,业巧林. 2009. 基于纹理提取和SVM技术的自动木材缺陷识别. 计算机工程与应用,45(23):219-223. (Zhang Z, Ye N, Ye Q L. 2009. Automatic wood defects recognition based on texture extraction and support vector machine technology. Computer Engineering and Applications, 45(23):219-223.[in Chinese]) 赵 帅,黄亦翔,王浩任,等. 2017.基于随机森林与主成分分析的刀具磨损评估. 机械工程学报,53(21):181-189. (Zhao S, Huang Y X, Wang H R, et al. 2017. Random forest and principle components analysis based on health assessment methodology for tool wear. Journal of Mechanical Engineering,53(21):181-189.[in Chinese]) Breiman L. 2001. Random forests. Machine Learning, 45(1):5-32. |