Scientia Silvae Sinicae ›› 2023, Vol. 59 ›› Issue (5): 100-108.doi: 10.11707/j.1001-7488.LYKX20220324
Previous Articles Next Articles
Lingling Li(),Yuanye Zhu,Shengpei Zhang,He Li*(
)
Received:
2022-05-12
Online:
2023-05-25
Published:
2023-08-02
Contact:
He Li
E-mail:1903684246@qq.com;csuftlihe@163.com
CLC Number:
Lingling Li,Yuanye Zhu,Shengpei Zhang,He Li. Identification of the Compound Pathogens Causing Anthracnose of Camellia oleifera and Evaluation of Fungicides in Laboratory[J]. Scientia Silvae Sinicae, 2023, 59(5): 100-108.
Table 1
Primer sequence and PCR cycling conditions"
基因 Gene | 引物序列(5’-3’) Sequence | PCR扩增程序 PCR cycling conditions |
核糖体转录间隔区 Internal transcribed spacers(ITS) | F: TCCGTAGGTGAACCTGCGG | 95 ℃预变性5 min; 95 ℃变性30 s, 56 ℃退火30 s, 72 ℃延伸1 min, 32个循环; 72 ℃延伸10 min。 An initial denaturation at 95 ℃ for 5 min, followed by 32?cycles of denaturation at 95 ℃ for 30?s, annealing at 56 ℃ for 30?s and extension at 72 ℃ for 1 min, coupled with a final extension step of 10 min at 72 ℃. |
R: TCCTCCGCTTATTGATATGC | ||
apn2和MAT1-2-1基因(ApMat) | F: TCATTCTACGTATGTGCCCG | |
R: CCAGAAATACACCGAACTTGC | ||
β-微管蛋白基因 β-tubulin(TUB2) | F: AACATGCGTGAGATTGTAAGT | 95 ℃预变性8 min; 95 ℃变性30s, 55 ℃退火30 s, 72 ℃延伸1 min, 35个循环; 72 ℃延伸5 min。 An initial denaturation at 95 ℃ for 8 min, followed by 35?cycles of denaturation at 95 ℃ for 30?s, annealing at 55 ℃ for 30?s and extension at 72 ℃ for 1 min, coupled with a final extension step of 5 min at 72 ℃. |
R: ACCCTCAGTGTAACCCTTGGC | ||
延伸因子 Elongation factor-1α(EF-1α) | F: GTCGTYGTYATYGGHCAYGT | 95 ℃预变性8 min; 95 ℃变性15 s, 55 ℃退火20 s, 72 ℃延伸1 min, 35个循环; 72 ℃延伸5 min。 An initial denaturation at 95 ℃ for 8 min, followed by 35?cycles of denaturation at 95 ℃ for 15?s, annealing at 55 ℃ for 20?s and extension at 72 ℃ for 1 min, coupled with a final extension step of 5 min at 72 ℃. |
R:ACHGTRCCRATACCACCRATCTT | ||
组蛋白 Histone-3 | F: ACTAAGCAGACCGCCCGCAGG | 96 ℃预变性2 min; 96 ℃变性15 s, 55 ℃退火30 s, 72 ℃延伸35 s, 30个循环; 72 ℃延伸2 min。 An initial denaturation at 96 ℃ for 2 min, followed by 30?cycles of denaturation at 96 ℃ for 15?s, annealing at 55 ℃ for 30?s and extension at 72 ℃ for 35 s, coupled with a final extension step of 2 min at 72 ℃. |
R: GCGGGCGAGCTGGATGTCCTT |
Fig.2
Symptoms of oil-tea leaves and apples after compound inoculation of pathogens C1:C. fructicola;C2: C. siamense;P1:Pestalotiopsis sp.2;P2:P. diploclisia;P3:P. parva;N1:Neopestalotiopsis sp.3;N2:Neo. cubana;N3:Neopestalotiopsis sp.2;N4:Neopestalotiopsis sp.1;C1+C1、C2+C2:C. fructicola or C. siamense was inoculated first, then the same strain was inoculated; P1+P1、P2+P2、P3+P3:the strain of Pestalotiopsis species was inoculated first, then the same strain was inoculated; N1+N1、N2+N2、N3+N3,N4+N4: the strain of Neopestalotiopsis species was inoculated first, then the same strain was inoculated; C1+P1/N2:C. fructicola was inoculated first, then the strain of Pestalotiopsis spp. or Neopestalotiopsis spp. was inoculated; C2+P2/P3/N1/N2/N3/N4: C. siamense was inoculated first, then the strain of Pestalotiopsis spp. or Neopestalotiopsis spp. was inoculated; CK: Control; Different lowercase letters indicate significant differences on P≤0.05."
Table 2
Determination of the inhibition effects of four fungicides against pathogens of Camellia oleifera"
杀菌剂 Fungicide | 质量浓度 Mass concentration/(μg·mL?1) | 不同病原种类的菌丝生长抑制率 Inhibition rate of different species(%) | ||||
果生炭疽菌 C. fructicola | 胶胞炭疽菌 C. gloeosporioides | 暹罗炭疽菌 C. siamense | 山茶炭疽菌 C. camelliae | 新拟盘多毛孢属 Neopestalotiopsis sp. | ||
啶酰菌胺 Boscalid | 50 | 20.0±0.00b | 17.0±0.00c | 12.7±1.86d | 15.6±0.72c | 25.5±1.02a |
氟吡菌酰胺 Fluopyram | 50 | 33.0±1.06c | 31.0±1.00d | 25.3±0.29e | 36.0±0.40b | 43.3±0.96a |
嘧菌酯 Azoxystrobin | 50 | 57.4±0.57c | 51.2±0.25d | 40.5±0.69e | 72.2±1.49b | 100.0±0.00a |
啶氧菌酯 Picoxystrobin | 50 | 60.9±0.31d | 64.1±1.05c | 49.5±0.47e | 86.8±0.49b | 100.0±0.00a |
Table 3
Toxicity test of four fungicides against pathogens of Camellia oleifera"
杀菌剂 Fungicide | 不同病原种类的 EC50 Median effective concentration of different species/(μg·mL?1) | |||||
果生炭疽菌 C. fructicola | 胶胞炭疽菌 C. gloeosporioides | 暹罗炭疽菌 C. siamense | 山茶炭疽菌 C. camelliae | 新拟盘多毛孢属 Neopestalotiopsis sp. | 拟盘多毛孢属 Pestalotiopsis sp. | |
嘧菌酯 Azoxystrobin | - | - | - | - | 0.011±0.001 | 0.007±0.001 |
啶氧菌酯 Picoxystrobin | - | - | - | - | 0.011±0.003 | 0.020±0.004 |
咪鲜胺 Prochloraz | 0.043±0.006 | 0.023±0.001 | 0.022±0.002 | 0.011±0.009 | 0.110±0.040 | 0.026±0.007 |
苯醚甲环唑D ifenoconazole | 0.306±0.023 | 0.228±0.012 | 0.153±0.007 | 0.123±0.039 | 0.555±0.145 | 0.150±0.044 |
曹志华, 束庆龙, 程义明, 等. 12种农药对油茶炭疽菌的室内毒力测定. 农药, 2012, 51 (4): 304- 306.
doi: 10.3969/j.issn.1006-0413.2012.04.024 |
|
Cao Z H, Shu Q L, Cheng Y M, et al. Toxicity measurement of 12 fungicides on Colletotrichum gloeosporioides from Camellia oleifera . Agrochemicals, 2012, 51 (4): 304- 306.
doi: 10.3969/j.issn.1006-0413.2012.04.024 |
|
陈绍红, 孙 思, 王 军. 14种杀菌剂对油茶炭疽病的防治研究. 广东林业科技, 2017, 22 (2): 42- 45. | |
Chen S H, Sun S, Wang J. Study on control of anthracnose of Camellia oleifera by 14 fungicides . Guangdong Forestry Science and Technology, 2017, 22 (2): 42- 45. | |
陈永忠, 罗 建, 王 瑞, 等. 中国油茶产业发展的现状与前景. 粮食科技与经济, 2013, 38 (1): 10- 12.
doi: 10.3969/j.issn.1007-1458.2013.01.035 |
|
Chen Y Z, Luo J, Wang R, et al. Present situation and prospect of oil tea industry in China. Grain Science and Technology and Economy, 2013, 38 (1): 10- 12.
doi: 10.3969/j.issn.1007-1458.2013.01.035 |
|
冯宝珍, 李培谦. 月季黑斑病病原菌鉴定及室内药剂初步筛选. 植物保护学报, 2019, 46 (5): 1147- 1154.
doi: 10.13802/j.cnki.zwbhxb.2019.2018149 |
|
Feng B Z, Li P Q. Identification of the pathogen causing black spot of Chinese rose and fungicide screening for the disease control. Journal of Plant Protection, 2019, 46 (5): 1147- 1154.
doi: 10.13802/j.cnki.zwbhxb.2019.2018149 |
|
高杨杨. 2021. 琥珀酸脱氢酶抑制剂类杀菌剂对炭疽病菌的毒力差异机制. 泰安: 山东农业大学博士论文, 56-63. | |
Gao Y Y. 2021. Molecular basis of selective activity of succinate dehydrogenase inhibitor fungicides against Colletotrichum spp. . Taian: PhD thesis of Shandong Agricultural University, 56-63. [ in Chinese] | |
李 河, 李司政, 王悦辰, 等. 油茶苗圃炭疽病原菌鉴定及抗药性. 林业科学, 2019, 55 (5): 85- 94.
doi: 10.11707/j.1001-7488.20190510 |
|
Li H, Li S Z, Wang Y C, et al. Identification of the pathogens causing anthracnose of Camellia Oleifera in nursery and their resistance to fungicides . Scientia Silvae Sinicae, 2019, 55 (5): 85- 94.
doi: 10.11707/j.1001-7488.20190510 |
|
李 河, 李 杨, 蒋仕强, 等. 湖南省油茶炭疽病病原鉴定. 林业科学, 2017, 53 (8): 43- 53.
doi: 10.11707/j.1001-7488.20170806 |
|
Li H, Li Y, Jiang S Q, et al. Pathogen of oil-tea trees anthracnose caused by Colletotrichum spp . in Hunan Province. Scientia Silvae Sinicae, 2017, 53 (8): 43- 53.
doi: 10.11707/j.1001-7488.20170806 |
|
李 河, 周国英, 徐建平, 等. 一种油茶新炭疽病原的多基因系统发育分析鉴定. 植物保护学报, 2014, 41 (5): 602- 607.
doi: 10.13802/j.cnki.zwbhxb.2014.05.034 |
|
Li H, Zhou G Y, Xu J P, et al. Pathogen identification of a new anthracnose of Camellia oleifera in China based on multiple-gene phylogeny . Journal of Plant Protection, 2014, 41 (5): 602- 607.
doi: 10.13802/j.cnki.zwbhxb.2014.05.034 |
|
李 河, 周国英, 徐建平. 一种新油茶炭疽病原多基因序列鉴定. 植物保护, 2015, 41 (2): 92- 96.
doi: 10.3969/j.issn.0529-1542.2015.02.016 |
|
Li H, Zhou G Y, Xu J P. Pathogen identification of a new anthracnose of Camellia oleifera in China based on multiple-gene sequences . Plant Protection, 2015, 41 (2): 92- 96.
doi: 10.3969/j.issn.0529-1542.2015.02.016 |
|
李培琴, 明 洁, 张舒瑶, 等. 黄帝陵侧柏叶枯病的病原菌鉴定及防治药剂筛选. 西北农林科技大学学报(自然科学版), 2021, 49 (1): 74- 84.
doi: 10.13207/j.cnki.jnwafu.2021.01.009 |
|
Li P Q, Ming J, Zhang S Y, et al. Pathogen identification and selection of controlling fungicides of leaf blight of Platycladus orientalis at the Mausoleum of Yellow Emperor . Journal of Northwest A & F University (Natural Science Edition), 2021, 49 (1): 74- 84.
doi: 10.13207/j.cnki.jnwafu.2021.01.009 |
|
刘 霞, 杨克强, 朱玉凤, 等. 8种杀菌剂对核桃炭疽病病原菌胶孢炭疽菌的室内毒力. 农药学学报, 2013, 15 (4): 412- 420.
doi: 10.3969/j.issn.1008-7303.2013.04.08 |
|
Liu X, Yang K Q, Zhu Y F, et al. Laboratory toxicity of eight fungicides against Colletotrichum gloeosporioides causing walnut anthracnose . Chinese Journal of Pesticide Science, 2013, 15 (4): 412- 420.
doi: 10.3969/j.issn.1008-7303.2013.04.08 |
|
钱恒伟, 徐鹏程, 迟梦宇, 等. 尖孢镰刀菌与细极链格孢复合侵染引起甘薯茎枯病. 植物保护学报, 2017, 44 (5): 867- 868. | |
Qian H W, Xu P C, Chi M Y, et al. Mixed infection by Fusarium oxysporum and Alternaria tenuissima on sweet potato Fusarium wilt . Journal of Plant Protection, 2017, 44 (5): 867- 868. | |
王义勋, 刘 伟, 陈京元, 等. 不同杀菌剂对油茶炭疽病田间防治试验. 湖北林业科技, 2014, 43 (6): 35- 37.
doi: 10.3969/j.issn.1004-3020.2014.06.011 |
|
Wang Y X, Liu W, Chen J Y, et al. Fungicidal control of Colletotrichum gloeosporioides in field Camellia oleifera . Hubei Forestry Science and Technology, 2014, 43 (6): 35- 37.
doi: 10.3969/j.issn.1004-3020.2014.06.011 |
|
温 浩, 魏佳爽, 张桂军, 等. 九种杀菌剂对新拟盘多毛孢病菌的室内毒力作用. 农药学学报, 2019, 21 (4): 437- 443.
doi: 10.16801/j.issn.1008-7303.2019.0071 |
|
Wen H, Wei J S, Zhang G J, et al. Laboratory toxicity of nine fungicides against Neopestalotiopsis clavispora . Chinese Journal of Pesticide Science, 2019, 21 (4): 437- 443.
doi: 10.16801/j.issn.1008-7303.2019.0071 |
|
吴会杰, 严蕾艳, 郭 珍, 等. 黑点根腐病菌和镰孢菌复合侵染引起的甜瓜根腐病的鉴定. 中国瓜菜, 2021, 34 (10): 15- 19.
doi: 10.3969/j.issn.1673-2871.2021.10.003 |
|
Wu H J, Yan L Y, Guo Z, et al. Identification of melon root rot pathogen of Monosporascus cannonballus and Fusarium oxysporum f . sp. melonis. China Cucurbits and Vegetables, 2021, 34 (10): 15- 19.
doi: 10.3969/j.issn.1673-2871.2021.10.003 |
|
徐从英, 王 萌, 梁晓宇, 等. 云南西双版纳地区橡胶树炭疽病菌的系统进化分析和室内药剂筛选. 西南农业学报, 2021, 34 (12): 2653- 2658.
doi: 10.16213/j.cnki.scjas.2021.12.014 |
|
Xu C Y, Wang M, Liang X Y, et al. Phylogenetic analysis and fungicide screening for Colletotrichum causing rubber anthracnose in Xishuangbanna, Yunnan . Southwest China Journal of Agricultural Sciences, 2021, 34 (12): 2653- 2658.
doi: 10.16213/j.cnki.scjas.2021.12.014 |
|
徐娜娜, 庄治国, 孔 月, 等. 2021. 9种杀菌剂对牡丹炭疽病菌的效果评价. 现代农药, 20(5): 48−50. | |
Xu N N, Zhuang Z G, Kong Y, et al. Effects of nine types of fungicides on mycelial growth of Colletotrichum gloeosporioides in peony. Modern Agrochemicals, Modern Agrochemicals, 20(5): 48−50.[in Chinese] | |
严 明, 柏亚罗. 甲氧基丙烯酸酯类等四大类杀菌剂市场概况及前景展望. 现代农药, 2016, 15 (6): 1- 8.
doi: 10.3969/j.issn.1671-5284.2016.06.001 |
|
Yan M, Bai Y L. Market overview and prospect outlook on four fungicide sectors including methoxyacrylates. Modern Agrochemicals, 2016, 15 (6): 1- 8.
doi: 10.3969/j.issn.1671-5284.2016.06.001 |
|
张立伟, 王辽卫. 我国油茶产业的发展现状与展望. 中国油脂, 2021, 46 (6): 6- 9.
doi: 10.19902/j.cnki.zgyz.1003-7969.2021.06.002 |
|
Zhang L W, Wang L W. Prospect and development status of oil-tea camellia industry in China. China Oils and Fats, 2021, 46 (6): 6- 9.
doi: 10.19902/j.cnki.zgyz.1003-7969.2021.06.002 |
|
张永乐, 刘会香, 许永玉, 等. 围小丛壳菌山茶专化型与葡萄座腔菌复合侵染引致茶褐枯病. 茶叶科学, 2018, 38 (1): 87- 93.
doi: 10.3969/j.issn.1000-369X.2018.01.009 |
|
Zhang Y L, Liu H X, Xu Y Y, et al. The tea brown blight disease caused by co-infection of Glomerella cingulate f . sp. camellia and Botryosphaeria dothidea. Journal of Tea Science, 2018, 38 (1): 87- 93.
doi: 10.3969/j.issn.1000-369X.2018.01.009 |
|
赵丽玲, 钟 静, 施章吉, 等. 复合侵染水茄的两种菜豆金色花叶病毒属病毒基因组结构特征分析. 植物保护学报, 2020, 47 (2): 355- 364.
doi: 10.13802/j.cnki.zwbhxb.2020.2019119 |
|
Zhao L L, Zhong J, Shi Z J, et al. Characterization of the genome organization of two begomoviruses mixedly infecting wild eggplant Solanum torvum . Journal of Plant Protection, 2020, 47 (2): 355- 364.
doi: 10.13802/j.cnki.zwbhxb.2020.2019119 |
|
Cai L, Hyde K D, Taylor P W J, et al. A polyphasic approach for studying Colletotrichum . Fungal Diversity, 2009, 39 (1): 183- 204. | |
Li H, Zhou G Y, Qi X Y, et al. First report of Colletotrichum henanense causing anthracnose on tea-oil trees in China . Plant Disease, 2018, 102 (5): 1040. | |
Li J, Wang J C, Ding T B, et al. Synergistic Effects of a Tomato chlorosis virus and Tomato yellow leaf curl virus mixed infection on host tomato plants and the whitefly vector . Frontiers in plant science, 2021, 12, 672400.
doi: 10.3389/fpls.2021.672400 |
|
Li S Z, Li H. First report of Colletotrichum nymphaeae causing anthracnose on Camellia oleifera in China . Plant Disease, 2020, 104 (6): 1860. | |
Maharachchikumbura S S N, Laringnonl P, Hyde K D, et al. Characterization of Neopestalotiopsis, Pestalotiopsis and Truncatella species associated with grapevine trunk diseases in France . Phytopathologia Mediterranea, 2016, 55, 380- 390. | |
Ontiveros I, LopezMoya J J, DíazPendón J A. Co-infection of tomato plants with Tomato yellow leaf curl virus and Tomato chlorosis virus affects the interaction with host and whiteflies . Phytopathology, 2021, 112 (4): 944- 952. | |
Woudenberg J H C, Groenewald J Z, Binder M, et al. Alternaria redefined . Studies in Mycology, 2013, 75 (1): 171- 212. | |
Xu, J R, Hamer, J E. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea . Genes & Development, 1996, 10 (21): 2696- 2706. |
[1] | Shouke Zhang,Zikun Li,Hao Yin,Wei Zhang,Jinping Shu,Haojie Wang,Xudong Zhou,Yangdong Wang. Effects of Saponin Content in Camellia oleifera Resistant Clones on the Gut Microbiome Structure of the Seed Pest Curculio chinensis (Coleoptera: Curculionidae) [J]. Scientia Silvae Sinicae, 2022, 58(7): 120-127. |
[2] | Yanmin Li,Deyi Yuan,Tianwen Ye,Ya Chen,Chunxia Han,Shixin Xiao. Karyotype Analysis of 18 Excellent Individuals in F1 Generation of Interspecific Hybridization of Oil-Tea (Camellia oleifera) [J]. Scientia Silvae Sinicae, 2022, 58(4): 165-174. |
[3] | Zhiyang Li,Xiaolin Chen,Lili Li,Shiping Xu,Yuanhao He. Transcriptome Analysis of Camellia olefolia Root and the Endophytic Bacteria Bacillus Subtilis at the Early Stage of Their Interaction [J]. Scientia Silvae Sinicae, 2022, 58(3): 48-58. |
[4] | Yongzhong Chen,Caixia Liu,Yanming Xu,Zhen Zhang,Yinghe Peng,Longsheng Chen,Yirong Su,Rui Wang,Wei Tang. Effects of Herbage Inter-Planting on Structure and Stability of Soil Microbial Community in Camellia oleifera Plantations [J]. Scientia Silvae Sinicae, 2022, 58(11): 61-70. |
[5] | Xingzhou Chen,Guoying Zhou,Xinggang Chen,Lingyu Jiang,Anhua Bao,Jun Liu. Screening of Effectors of Colletotrichum fructicola in Camellia oleifera [J]. Scientia Silvae Sinicae, 2021, 57(9): 110-120. |
[6] | Xiya Li,Shengpei Zhang,He Li. Function of Vacuolar Protein Sorting CfVps26 in Colletotrichum fructicola on Camellia oleifera [J]. Scientia Silvae Sinicae, 2021, 57(8): 94-101. |
[7] | Baicheng Xie,Lingyao Guo,Dongsheng Du,Yan Tan,Guodong Wang. Responses of Camellia oleifera Yield to Heat Accumulation Temperature and High Temperature Days in Key Growth Period [J]. Scientia Silvae Sinicae, 2021, 57(5): 34-42. |
[8] | Xin Chen,Min Wang,Maorun Fu,Guifang Wang,Kun Xiang,Qingzhong Liu,Wenxiao Jiao,Meiyong Zhang,Haifeng Xu. Metabolic Analysis of Phenolic Compounds Associated with Walnut Anthracnose [J]. Scientia Silvae Sinicae, 2021, 57(10): 71-80. |
[9] | Yalan Gao,Yuanhao He,He Li. Biological Function bZIP-Type Transcription Factor CfAp1 in Colletotrichum fructicola [J]. Scientia Silvae Sinicae, 2020, 56(9): 30-39. |
[10] | Shouke Zhang,Linxin Fang,Yi Wang,Wei Zhang,Jinping Shu,Yangdong Wang,Haojie Wang. Evaluation Model for Resistance of Camellia oleifera to Curculio chinensis (Coleoptera: Curculionidae) Based on Fruit Properties [J]. Scientia Silvae Sinicae, 2020, 56(12): 67-74. |
[11] | Li He, Li Sizheng, Wang Yuechen, Liu Jun, Xu Jianping, Zhou Guoying. Identification of the Pathogens Causing Anthracnose of Camellia oleifera in Nursery and Their Resistence to Fungicides [J]. Scientia Silvae Sinicae, 2019, 55(5): 85-94. |
[12] | Li He, Li Yang, Jiang Shiqiang, Liu Jun'ang, Zhou Guoying. Pathogen of Oil-Tea Trees Anthracnose Caused by Colletotrichum spp. in Hunan Province [J]. Scientia Silvae Sinicae, 2017, 53(8): 43-53. |
[13] | Li He, Li Yang, Xu Jianping, Zhou Guoying. Population Genetic Structure of Colletotrichum fructicola from Oil-Tea and Other Host Plants in Hainan province [J]. Scientia Silvae Sinicae, 2016, 52(10): 80-88. |
[14] | Yu Xianmei, Hou Changming, Wang Jie, Wang Hairong, An Miao, Ai Chengxiang. Identification of Pathogen Causing Beef Heart Persimmon Anthracnose in Shandong and Its Pathogenicity [J]. Scientia Silvae Sinicae, 2015, 51(4): 126-133. |
[15] | Wu Nan;Liu Jun'ang;Zhou Guoying;Yan Ruikun;Dong Wentong. Inversion Anthracnose Disease Indices of Chinese Fir Based on Hyperspectral Derivative Indices [J]. Scientia Silvae Sinicae, 2012, 48(8): 94-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||